Presenting Effective Methods in Classification of Echocardiographic Views using Deep Learning
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 37، شماره: 11
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 137
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-37-11_002
تاریخ نمایه سازی: 23 تیر 1403
چکیده مقاله:
Cardiovascular imaging has become the foundation of heart failure diagnostic studies. The most crucial technique for clinically diagnosing cardiac diseases is echocardiography. Depending on the positioning and angles of the probe, different cardiac views can be obtained during echocardiography. Therefore, the automatic classification of echo views, especially for computer systems and even automatic diagnosis in later stages, is the first step for echocardiogram diagnosis. In addition, the classification of heart views allows the tagging of echo videos to be done on a high scale and the possibility of database management and collection is provided. However, deep learning is an advanced machine learning method that is used to analyze both natural and medical images. But so far, it has not been widely used on cardiac ultrasound, the reason is the complexity of formats with multiple views and multi-view formats of echocardiogram. The proposed topic of this research is to provide novel and effective architectures for cardiac view classification. The aim of this study is to overcome the challenges in processing, categorizing and recognizing echo views stored as videos and images. In particular, in order to extract features, automatic methods and deep networks have replaced manual methods. In the presented solution, by using the transfer learning and the ۳d-cnn method in image and video classification, we have improved the accuracy of echo views classification.
کلیدواژه ها:
نویسندگان
M. Mohammadi
Department of Artificial Intelligence, Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
A. Talebpour
Department of Artificial Intelligence, Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran
A. Hosseinsabet
Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :