Applying Bagging Machine Learning Techniques to Diagnose Dyslexia in Visual Tasks

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 216

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ELEMECHCONF08_097

تاریخ نمایه سازی: 19 تیر 1403

چکیده مقاله:

Dyslexia is a disorder of neurological origin that primarily impacts children's learning, resulting in difficulties with reading and writing. If left undiagnosed, it can cause significant frustration and feelings of intimidation for both the affected children and their families. Without early intervention, these children may experience substantial academic achievement gaps by the time they reach high school. Early detection and intervention for dyslexic students are crucial for fostering positive self-esteem and maximizing academic potential. This paper introduces a Bagging approach for automatically identifying dyslexia in children using machine learning techniques. In this study, we pre-processed brain signals and extracted EEG signal features across ۱۹ channels, focusing on the amplitude and latency of ERP components. Due to the high number of features, we employed Principal Component Analysis (PCA) for feature reduction. To prevent overfitting, we utilized K-fold cross-validation and ultimately, we applied the bagging method for classification.Using this approach, we achieved an overall average classification accuracy of ۹۰.۶%, with sensitivity and specificity rates of ۱۰۰% and ۸۱.۲%, respectively

نویسندگان

Mona Zarei

Department of Biomedical Engineering, K. N. Toosi University of Technology, Tehran, Iran

Behnam Arefi-Rad

Department of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran

Maryam Mohebbi

Department of Biomedical Engineering, K. N. Toosi University of Technology, Tehran, Iran

Reza Rostami

Department of Psychology, University of Tehran, Tehran, Iran