Leaf disease detection from Pepper images using transfer learning
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 185
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ECMECONF19_048
تاریخ نمایه سازی: 18 تیر 1403
چکیده مقاله:
Automated detection and classification of plant diseases are essential for ensuring crop health and productivity. Various sensors are used to monitor plant health, which is then analyzed using advanced techniques. This research presents a method for detecting and classifying pepper diseases through the utilization of convolutional neural networks with transfer learning. The study utilized images of pepper leaves from the PlantVillage dataset. By employing state-of-the-art pre-trained convolutional neural networks and customizing them for our dataset, our results outperformed previous studies. Our approach achieved a notable ۱۰۰% accuracy rate for test data, surpassing existing methodologies. This highlights the precision of our method in identifying and categorizing diseases in pepper plants. Furthermore, our research emphasizes the importance of integrating advanced analytical approaches to enhance disease management in agriculture.
کلیدواژه ها:
نویسندگان
Masoud Yarali Darani
Affiliation: Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, IranMaster student of Data Science at Tarbiat Modares University of Tehran