Prediction of Fusion Rod Curvature Angles in Posterior Scoliosis Correction Using Artificial Intelligence
محل انتشار: مجله استخوان و جراحی عمومی، دوره: 12، شماره: 7
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 135
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_TABO-12-7_006
تاریخ نمایه سازی: 17 تیر 1403
چکیده مقاله:
Objectives: This study aimed to estimate post-operative rod angles in both concave and convex sides of scoliosis curvature in patients who had undergone posterior surgery, using neural networks and support vector machine (SVM) algorithms.Methods: Radiographs of ۷۲ scoliotic individuals were obtained to predict post-operative rod angles at all fusion levels (all spinal joints fused by rods). Pre-operative radiographical indices and pre-operatively resolved net joint moments of the apical vertebrae were employed as inputs for neural networks and SVM with biomechanical modeling using inverse dynamics analysis. Various group combinations were considered as inputs, based on the number of pre-operative angles and moments. Rod angles on both the concave and convex sides of the Cobb angle were considered as outputs. To assess the outcomes, root mean square errors (RMSEs) were evaluated between actual and predicted rod angles.Results: Among eight groups with various combinations of radiographical and biomechanical parameters (such as Cobb, kyphosis, and lordosis, as well as joint moments), RMSEs of groups ۴ (with seven radiographical angles in each case, which is greater in quantity) and ۵ (with four radiographical angles and one biomechanical moment in each case, which is the least possible number of inputs with both radiographical and biomechanical parameters) were minimum, particularly in prediction of the concave rod kyphosis angle (errors were ۵.۵° and ۶.۳° for groups ۴ and ۵, respectively). Rod lordosis angles had larger estimation errors than rod kyphosis ones.Conclusion: Neural networks and SVM can be effective techniques for the post-operative estimation of rod angles at all fusion levels to assist surgeons with rod bending procedures before actual surgery. However, since rod lordosis fusion levels vary widely across scoliosis cases, it is simpler to predict rod kyphosis angles, which is more essential for surgeons. Level of evidence: IV
کلیدواژه ها:
نویسندگان
Rasoul Abedi
Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
Nasser Fatouraee
Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
Mahdi Bostanshirin
Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
Navid Arjmand
Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
Hasan Ghandhari
Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :