Designing a model to detect and separate data anomalies caused by sensors and medical wearables using LSTM neural network algorithm

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 81

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-15-11_012

تاریخ نمایه سازی: 17 تیر 1403

چکیده مقاله:

Predicting abnormalities of wearable medical devices plays a very important role in saving the lives and health of patients. This importance has opened new horizons for researchers with the development of newer algorithms. The long-term memory algorithm (LSTM) is one of the most important methods that are a special type of recurrent neural network (RNN) that has a high ability in this field and greatly increases the accuracy of correct and incorrect prediction of these abnormalities. In the current research, by using this algorithm and taking into account different parameters, the anomalies related to the sensors of the research field were determined. The results showed that there are influential parameters in the construction of this architecture, which include ۳ very important factors: the number of neurons in the LSTM layer, the batch size, and the activation function. Also, the LSTM architecture together with the Dropout layer, with parameters Batch size = N = ۱۲۸ and Tanh activation function shows a better performance and the lowest amount of error (MAPE) as well as the amount of the calculated mean square error (RMSE) in determining the anomaly. have sensors in the medical field. Investigations related to the results of ۱۶ repetitions of optimization also showed that the process of reducing errors in the correct and incorrect identification of anomalies in the training phase has reached its lowest level with the increase in the number of tests, which shows the optimality and appropriateness of the work process. Therefore, this algorithm has a very good ability to identify errors in sensors and medical wearables, and it will be of great help in identifying the possible failure of sensors, and critical conditions of the patient, informing and finally helping patients in time.

نویسندگان

Tahereh Moein

Department of Information Technology, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Hossein Moinzad

Department of Information Technology, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Mohammad Ali Keramati

Department of Information Technology, Central Tehran Branch, Islamic Azad University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • C.C. Aggarwal, Data Mining: The Textbook, Yorktown Heights, Springer, New ...
  • R. Alharbi and H. Almagwashi, The privacy requirements for wearable ...
  • G. Appelboom, E. Camacho, M.E. Abraham, S.S. Bruce, E.L. Dumont, ...
  • M. Chan, D. Esteve, J.Y. Fourniols, C. Escriba, and E. ...
  • V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection: A ...
  • Z. Geng, F. Tang, Y. Ding, S. Li, and X. ...
  • M.A. Hayes and M.A. Capretz, Contextual anomaly detection in big ...
  • S.M.A. Iqbal, I. Mahgoub, E. Du, M.A. Leavitt, and W. ...
  • S. Jithin, P. Pawan, K. Khushi, P. Sandeep, L. Feng, ...
  • W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, ...
  • B. Mohanta, P. Das, and S. Patnaik, Healthcare ۵.۰: A ...
  • A. Mosenia, S. Sur-Kolay, A. Raghunathan, and N.K. Jha, Wearable ...
  • C.C. Noble and D.J. Cook, Graph-based anomaly detection, Proc. ۹th ...
  • S. Osman, G. Alexey, and M. Ahmed, Anomaly detection in ...
  • J.D. Parmar and J.T. Patel, Anomaly Detection in Data Mining: ...
  • S. Pourzaker Arabani and H. Ebrahimpour Komleh, The optimization of ...
  • S. Rezaei and A.A. Safai, A systematic review of wearable ...
  • E. Sazonov and M.R. Neuman, Wearable Sensors: Fundamentals, Implementation and ...
  • J. Schmidhuber, Deep learning in neural networks: An overview, Neural ...
  • Science Soft, IT consulting and software development services, Wearable Medical ...
  • M.V. Shcherbakov, A. Brebels, N.L. Shcherbakova, V.A. Kamaev, O.M. Gerget, ...
  • S. Shekhar, C.T. Lu, and P. Zhang, Detecting graph-based spatial ...
  • E.H. Shortliffe and J.J. Cimino, Biomedical Informatics: Computer Applications in ...
  • A.K. Sikder, G. Petracca, H. Aksu, T. Jaeger, and A.S. ...
  • B.G. Silverman and J.A. Ichalkaranje, Intelligent Paradigms for Healthcare Enterprises: ...
  • M. Stoecklin, Anomaly detection by finding feature distribution outliers, Proc. ...
  • P. Sun, S. Chawla, and B. Arunasalam, Mining for outliers ...
  • A. Tarar, U. Mohammad, and S.K. Srivastava, Wearable skin sensors ...
  • M. Van Der Meulen, On the use of smart sensors, ...
  • X. Zhu and A. Cahan, Wearable technologies and telehealth in ...
  • نمایش کامل مراجع