A new gated multi-scale convolutional neural network architecture for recognition of Persian handwritten texts

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 178

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-15-10_012

تاریخ نمایه سازی: 17 تیر 1403

چکیده مقاله:

Due to the ease of writing by hand and the inherent interest in it, writing by hand is still popular among many people. Considering the digitization of today's world and the massive amount of current information on paper, there is a need for a system to convert handwriting into its digital form to speed up access to information and reduce storage space. According to the research carried out in this field, recognizing Persian handwritten texts remains a relatively difficult issue due to the complex and irregular nature of writing and the diversity of people's handwriting. This research introduces a novel method to recognize handwritten texts at the sentence level. To use word recognition methods in sentence recognition, segmentation techniques are needed to separate the words in the sentence. The segmentation algorithm in handwritten texts is inefficient due to overlapping words. Since Recurrent Neural Networks (RNN) were a turning point in the recognition of correct writing, in this article, by removing the segmentation step, a new architecture, an RNN combined with a Gated Multi-scale Convolutional Neural Network (GMCNN), is introduced in order to recognize handwritten sentences. Using the proposed architecture, recognizing Persian handwritten sentences in the Sadri dataset has a character error rate of ۲.۹۹%, a word error rate of ۶.۶۷%, and a sentence error rate of ۳۶.۸۷%. For further evaluation, the proposed method was also evaluated on IAM and Washington datasets. The results show that the proposed method outperforms other known algorithms.

نویسندگان

Sara Khosravi

Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran

Abdolah Chalechale

Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A.A. Aburas and S.M. Rehiel, Off-line Omni-style handwriting Arabic character ...
  • J. Aradillas, J. Murillo-Fuentes, and P. Olmos, Boosting offline handwritten ...
  • D. Bahdanau, K. Cho, and Y. Bengio, Neural machine translation ...
  • D. Banerjee, P. Bhowal, S. Malakar, E. Cuevas, M. P´erez-Cisneros, ...
  • A. Chaudhuri, K. Mandaviya, P. Badelia, and S.K. Ghosh, Optical ...
  • K.-N. Chen, C.-H. Chen, and C.-C. Chang, Efficient illumination compensation ...
  • X. Chen, L. Jin, Y. Zhu, C. Luo, and T. ...
  • A. Chowdhury and L. Vig, An efficient end-to-end neural model ...
  • Y.N. Dauphin, A. Fan, M. Auli, and D. Grangier, Language ...
  • H. El Bahi and A. Zatni, Text recognition in document ...
  • A. Fischer, E. Inderm¨uhle, H. Bunke, G. Viehhauser, and M. ...
  • R. Geetha, T. Thilagam, and T. Padmavathy, Effective offline handwritten ...
  • K. He, X. Zhang, S. Ren, and J. Sun, Delving ...
  • S. Ioffe, Batch renormalization: Towards reducing minibatch dependence in batch-normalized ...
  • L. Kang, P. Riba, M. Rusinol, A. Fornes, and M. ...
  • H. Karimi, A. Esfahanimehr, M. Mosleh, F.M.J. Ghadam, S. Salehpour ...
  • B.R. Kavitha and C. Srimathi, Benchmarking on offline handwritten Tamil ...
  • D.P. Kingma and J. Ba, Adam: A method for stochastic ...
  • V. Kukreja, A retrospective study on handwritten mathematical symbols and ...
  • A. Kumar, S. Sarkar and C. Pradhan, Malaria disease detection ...
  • U.V. Marti and H. Bunke, The IAM-database: An English sentence ...
  • S. Nasrollahi and A. Ebrahimi, Printed Persian subword recognition using ...
  • A.F. Neto, B.L. Bezerra, and A.H. Toselli, Towards the natural ...
  • X. Qu, W. Wang, K. Lu, and J. Zhou, Data ...
  • J. Sadri, M.R. Yeganehzad, and J. Saghi, A novel comprehensive ...
  • G. Sarker, M. Besra, and S. Dhua, A programming-based handwritten ...
  • H. Scheidl, Handwritten text recognition in historical documents, PhD diss., ...
  • P. Shirvani, M. Vatankhah Khouzani, and K. Yaghmaie, Persian text ...
  • J. Sueiras, V. Ruiz, A. Sanchez, and J.F. Velez, Offline ...
  • O. Surinta, M.F. Karaaba, L.R. Schomaker, and M.A. Wiering, Recognition ...
  • G. Tong, Y. Li, H. Gao, H. Chen, H. Wang, ...
  • A. Vinciarelli and J. Luettin, A new normalization technique for ...
  • X. Wang, A. Bao, Y. Cheng, and Q. Yu, Weight-sharing ...
  • H. Wu and X. Gu, Towards dropout training for convolutional ...
  • نمایش کامل مراجع