A new gated multi-scale convolutional neural network architecture for recognition of Persian handwritten texts
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 178
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-15-10_012
تاریخ نمایه سازی: 17 تیر 1403
چکیده مقاله:
Due to the ease of writing by hand and the inherent interest in it, writing by hand is still popular among many people. Considering the digitization of today's world and the massive amount of current information on paper, there is a need for a system to convert handwriting into its digital form to speed up access to information and reduce storage space. According to the research carried out in this field, recognizing Persian handwritten texts remains a relatively difficult issue due to the complex and irregular nature of writing and the diversity of people's handwriting. This research introduces a novel method to recognize handwritten texts at the sentence level. To use word recognition methods in sentence recognition, segmentation techniques are needed to separate the words in the sentence. The segmentation algorithm in handwritten texts is inefficient due to overlapping words. Since Recurrent Neural Networks (RNN) were a turning point in the recognition of correct writing, in this article, by removing the segmentation step, a new architecture, an RNN combined with a Gated Multi-scale Convolutional Neural Network (GMCNN), is introduced in order to recognize handwritten sentences. Using the proposed architecture, recognizing Persian handwritten sentences in the Sadri dataset has a character error rate of ۲.۹۹%, a word error rate of ۶.۶۷%, and a sentence error rate of ۳۶.۸۷%. For further evaluation, the proposed method was also evaluated on IAM and Washington datasets. The results show that the proposed method outperforms other known algorithms.
کلیدواژه ها:
نویسندگان
Sara Khosravi
Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran
Abdolah Chalechale
Department of Computer Engineering and Information Technology, Razi University, Kermanshah, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :