An approach based slack variables in network data envelopment analysis to incorporate dynamic effects
محل انتشار: مجله ایرانی مطالعات مدیریت، دوره: 17، شماره: 3
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 125
فایل این مقاله در 22 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JIJMS-17-3_009
تاریخ نمایه سازی: 10 تیر 1403
چکیده مقاله:
Senior managers are the customers of organizational performance measurement methods to help them make better decisions at the firm level. One of the most applicable methods is Network Data Envelopment Analysis (DEA). Network DEA models consider systems that have a network structure in which system inputs, after passing several intermediate interactions, are transformed into intermediate productions and finally leave the system as output products. However, many real-world cases do not necessarily conform to this network structure, which is related to the system outputs during multiple time periods or the same “dynamic” impacts. These structures cannot handle dynamic impacts. Therefore, this paper presents a novel structure that can consider the dynamic impacts and influences of sub-units on each other at various time periods. Besides, two models based on slack variables are proposed which can consider dynamic effects and calculate the efficiency of such networks. Using these models, the overall efficiency of networks is calculated for the whole time period. Finally, these models are applied to two examples, and the results obtained are compared with other methods.
کلیدواژه ها:
نویسندگان
Seyed Javad Salehzadeh
Department of Industrial Engineering, Isfahan University of Technology, Isfahan, Iran
Seyed Reza Hejazi
Department of Industrial Engineering, Isfahan University of Technology, Isfahan, Iran
Mohammad Taghi Rezvan
Department of Industrial Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :