Diagnosis of Mild Cognitive Impairment (MCI) Using a CNN-LSTM Hybrid Algorithm

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 154

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CECCONF22_004

تاریخ نمایه سازی: 8 تیر 1403

چکیده مقاله:

In recent years, the global increase in life expectancy has highlighted the importance of diagnosing Alzheimer's disease (AD). The onset of mild cognitive impairment (MCI) can indicate a progression towards irreversible mental decline, including AD and dementia. Consequently, early detection of MCI has become a focal point for researchers, as intervening at this stage can halt its advancement and facilitate effective treatment. Traditionally, biochemical and psychological tests have been used for diagnosis. However, an emerging approach involves analyzing Magnetic Resonance Imaging (MRI) scans to detect structural changes in the brain associated with AD. In this study, brain MRI images are pre-processed using the Statistical Parametric Mapping (SPM) toolbox. Subsequently, the gray matter (GM) is segmented and input into a ConvolutionalNeural Network (CNN) for analysis. The Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset is utilized for this purpose. The results demonstrate that the proposed method achieves an accuracy exceeding ۹۵% in classifying three categories: Normal Control (NC), AD, and MCI. This underscores the potential of MRI-based approaches forearly and accurate diagnosis of AD, paving the way for timely interventions and improved patient outcomes.

کلیدواژه ها:

Alzheimer’s Disease ، Brain MRI ، Convolutional Neural Network ، Statistical Parametric Mapping (SPM)

نویسندگان

Sara Yousefi Javan

Department of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran

Mahboobeh Houshmand

Department of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran

Seyyed Abed Hosseini

Department of Electrical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran