Development of an application for creation and learning of neural networks to utilize in environmental sciences
محل انتشار: مجله علوم زیستی خاورمیانه، دوره: 18، شماره: 5
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 70
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CJES-18-5_025
تاریخ نمایه سازی: 31 خرداد 1403
چکیده مقاله:
Machine learning methods originated from artificial intelligence and today are applied in several fields concerning environmental sciences. Thanks to their powerful nonlinear modelling capability, machine learning methods today are utilized in satellite data processing, general circulation models(GCM), weather and climate prediction, air quality forecasting, analysis and modelling of environmental data, oceanographic and hydrological forecasting, ecological modelling, and monitoring of snow, ice and forests. Currently, the popularity of neural networks is growing; their areas of application are constantly expanding. In these conditions, the task of choosing a convenient tool for utilizing in environmental science with neural networks becomes urgent. There are many tools for working with neural networks, but each of them has its own drawbacks. So most of the existing tools require users to have programming knowledge; there are no tools to help quickly select the optimal network structure for the problem being solved. The purpose of the research is to simplify the process of choosing the optimal structure of an artificial neural network by developing an application with a graphical user interface with a visual representation of the stages of creating and learning neural networks in environmental sciences. The object of research is artificial feed-forward neural networks. Research work on the study, comparison and analysis of existing tools for the creation, learning and use of artificial neural networks has been carried out. Based on the research results, an application with a graphical interface aimed at solving the assigned tasks has been developed. An application developed to achieve this goal works correctly, without failures, and allows creating and learning feed-forward neural networks without programming knowledge.
کلیدواژه ها:
نویسندگان
Ilgiz Rustamovich Sultanbekov
Department of Information Technologies and Energy Systems, Naberezhnye Chelny Institute (branch) of FSAEI HE KFU, Kazan Federal University,Kazan, Russia
Irina Yurievna Myshkina
Department of Information Technologies and Energy Systems, Naberezhnye Chelny Institute (branch) of FSAEI HE KFU, Kazan Federal University,Kazan, Russia
Larisa Yurievna Gruditsyna
Department of Information Technologies and Energy Systems, Naberezhnye Chelny Institute (branch) of FSAEI HE KFU, Kazan Federal University,Kazan, Russia
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :