Optimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network

سال انتشار: 1396
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 171

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_CJES-15-4_008

تاریخ نمایه سازی: 27 خرداد 1403

چکیده مقاله:

Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Province, Iran, SRC equation was derived, and then, using evolutionary algorithms (genetic algorithm and particle swarm optimization algorithm) it was calibrated again.  Worth mentioning, before model calibration, to increase the generalization power of the models, using self-organizing  map  (an unsupervised artificial neural network for data clustering), the data were clustered and then by  data sampling, they were classified into two homogeneous groups (calibration and test data set). The results showed that evolutionary algorithms are appropriate methods for optimizing coefficients of SRC model and their results are much more favorable than those of the conventional SRC models or SRC models corrected by correction factors. So that, the sediment rating curve models calibrated with evolutionary algorithms, by reducing the RMSE of the test data set of ۵۷۵۴.۰۲ ton day-۱ (in the initial SRC model) to ۱۶۸۱.۲۱ ton day-۱ (in the calibrated models by evolutionary algorithms) increased the accuracy of suspended sediment load estimation at a rate of ۴۰۷۲.۸۱ ton day-۱. In total, using evolutionary algorithms in calibrating SRC models prevents data log-transformation and use of correction factors along with increasing in the accuracy of molding results.

کلیدواژه ها:

نویسندگان

M Tabatabaei

Soil Conservation and Watershed Management Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

A Salehpour Jam

Soil Conservation and Watershed Management Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Altunkaynak, A ۲۰۰۹, Sediment load prediction by genetic algorithms. Advances ...
  • Bowden, GJ, Maier, HR & Dandy, GC ۲۰۰۲, Optimal division ...
  • Buyukyildiz, M & Kumcu, SY ۲۰۱۷, An Estimation of the ...
  • Chen, XY & Chau, KW ۲۰۱۶, A hybrid double feed-forward ...
  • Cheng, CT, Ou, CP, & Chau, KW ۲۰۰۲, Combining a ...
  • Ebtehaj, I & Bonakdari, H ۲۰۱۶, Assessment of evolutionary algorithms ...
  • Gholami, V, Darvari, Z & Saravi, MM ۲۰۱۵, Artificial neural ...
  • Guo, W & Wang, H ۲۰۱۰, PSO optimizing neural network ...
  • Hejazi, MI, Cai, X & Borah, DK ۲۰۰۸, Calibrating a ...
  • Jones, KR, Berney, O, Carr, DP & Barrett, EC ۱۹۸۱. ...
  • Kalteh AM ۲۰۰۸, Rainfall-runoff modelling using artificial neural networks (ANNs): ...
  • Kalteh, AM, Hjorth, P & Berndtsson, R ۲۰۰۸, Review of ...
  • Kao, SJ, Lee, TY & Milliman, JD ۲۰۰۵, Calculating highly ...
  • Kaufman, L & Rousseeuw, PJ ۲۰۰۹, Finding groups in data: ...
  • Kisi, O, Dailr, AH, Cimen, M & Shiri, J ۲۰۱۲, ...
  • Kisi, O & Zounemat-Kermani, M ۲۰۱۶, Suspended Sediment Modeling Using ...
  • Kisi, O, Keshavarzi, A, Shiri, J, Zounemat-Kermani, M & Omran, ...
  • Kohonen, T ۲۰۰۱, Self-organizing maps, Vol. ۳۰ of Springer Series ...
  • Kuok, KK, Harun, S & Shamsuddin, SM ۲۰۱۰, Particle swarm ...
  • LiX, Nour, MH, Smith, DW & Prepas, EE ۲۰۱۰, Neural ...
  • Mansourfar, K ۲۰۰۹, Advanced statistical methods using applied software. University ...
  • May, RJ, Maier, HR & Dandy, GC ۲۰۱۰, Data splitting ...
  • Mohammad Rezapour, O, Nour jou, P, Zeynali, MJ ۲۰۱۶, Compression ...
  • Muhammadi, A, Akbari, G & Azizzian, G ۲۰۱۲, Suspended sediment ...
  • Nourani, V, Alizadeh, F & Roushangar, K ۲۰۱۶, Evaluation of ...
  • Rodríguez-Blanco, ML, Taboada-Castro, MM, Palleiro-Suárez, L, Taboada-Castro, MT ۲۰۱۰, Temporal ...
  • Salehpour Jam, A, Tabatabaei, M, Sarreshtehdari, A ۲۰۱۷, Pedological criterion ...
  • Sarkar, A, Sharma, N & Singh, RD ۲۰۱۷, Sediment Runoff ...
  • Shahriar Shahhoseini, H, Moosavi, M, Mollajafari, M ۲۰۱۱, Evolutionary algorithms ...
  • Swain, R & Sahoo, B ۲۰۱۷, Mapping of heavy metal ...
  • Tayfur, G ۲۰۰۹, GA-optimized model predicts dispersion coefficient in natural ...
  • Tayfur, G ۲۰۱۲, Soft computing in water resources engineering: Artificial ...
  • Ulke, A, Tayfur, G & Ozkul, S ۲۰۰۹, Predicting suspended ...
  • Vercruysse, K, Grabowski, RC & Rickson, RJ ۲۰۱۷, Suspended sediment ...
  • Yar Kiani, A ۲۰۰۹ Intelligent Systems. Tehran: Press Center of ...
  • نمایش کامل مراجع