ENIXMA: ENsemble of EXplainable Methods for detecting network Attack
محل انتشار: مجله مهندسی کامپیوتر و دانش، دوره: 7، شماره: 1
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 133
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CKE-7-1_001
تاریخ نمایه سازی: 26 خرداد 1403
چکیده مقاله:
The Internet has become an integral societal component, with its accessibility being imperative. However, malicious actors strive to disrupt internet services and exploit service providers. Countering such challenges necessitates robust methods for identifying network attacks. Yet, prevailing approaches often grapple with compromised precision and limited interpretability. In this paper, we introduce a pioneering solution named ENIXMA, which harnesses a fusion of machine learning classifiers to enhance attack identification. We validate ENIXMA using the CICDDoS۲۰۱۹ dataset. Our approach achieves a remarkable ۹۰% increase in attack detection precision on the balanced CICDDoS۲۰۱۹ dataset, signifying a substantial advancement compared to antecedent methodologies that registered a mere ۳% precision gain. We employ diverse preprocessing and normalization techniques, including z-score, to refine the data. To surmount interpretability challenges, ENIXMA employs SHAP, LIME, and decision tree methods to pinpoint pivotal features in attack detection. Additionally, we scrutinize pivotal scenarios within the decision tree. Notably, ENIXMA not only attains elevated precision and interpretability but also showcases expedited performance in contrast to prior techniques.
کلیدواژه ها:
نویسندگان
seyed mojtaba abtahi
School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
Hossein Rahmani
School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
Milad allahgholi
School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
Sajjad alizadeh fard
School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :