Grape (Vitis Vinifera) Leaf Disease Detection and Classification Using Deep Learning Techniques: A Study on Real-Time Grape Leaf Image Dataset in India

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 129

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-37-8_005

تاریخ نمایه سازی: 23 خرداد 1403

چکیده مقاله:

In modern horticulture, the grape industry across the globe has been coping with the issue of grape crop diseases. The detection of grape leaf diseases using automated methods can greatly assist farmers in mitigating yield losses and ensuring sustainability. However, existing systems face hurdles while handling grape leaf images at the farm level, and these models fail to generalize well on un-seen images. This study proposes the development of a well-curated real-time dataset of grape leaf images assimilated through field visits in the study area in India. This designed dataset is further used to train convolutional neural network models to accurately identify and classify grape leaves as either diseased or healthy. The potential of transfer learning using CNN models like VGG, ResNet, Inception, and Xception is assessed on the curated dataset. Our findings indicate that ResNet۵۰V۲ outperformed the other models in accurately identifying and classifying grape leaf diseases. Using transfer learning, existing weights (pre-trained) and learned features were utilized for further training and fine-tuning the CNN models on our curated dataset.  The results of the proposed approach are compared with existing automated grape leaf disease identification techniques. It is observed that the proposed approach, which is on a real-time grape leaf image dataset, provides the highest accuracy among others. Further, this study provides a well-curated dataset of on-field grape leaf images in the Indian context, which can serve as a benchmark for future research. This study shows that deep learning techniques can aid farmers in identifying grape leaf diseases early.

نویسندگان

S. K. Shah

Symbiosis Institute of Geoinformatics, Symbiosis International (Deemed University), Pune, India

V. Kumbhar

Symbiosis Institute of Geoinformatics, Symbiosis International (Deemed University), Pune, India

T. P. Singh

Symbiosis Institute of Geoinformatics, Symbiosis International (Deemed University), Pune, India

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Gerland P, Raftery AE, Ševčíková H, Li N, Gu D, ...
  • Statistics H. Horticulture Statistics at a Glance. Horticulture Statistics Division, ...
  • Liu B, Ding Z, Tian L, He D, Li S, ...
  • Xie X, Ma Y, Liu B, He J, Li S, ...
  • Jha K, Doshi A, Patel P, Shah M. A comprehensive ...
  • Rajbongshi A, Islam M, Mia M, Sakif T, Majumder A. ...
  • Santos L, Santos FN, Oliveira PM, Shinde P, editors. Deep ...
  • Udendhran R, Balamurugan M. RETRACTED ARTICLE: Towards secure deep learning ...
  • Bawage S, Momin B. Detection of Diseases on Crops & ...
  • Kartikeyan P, Shrivastava G. Review on emerging trends in detection ...
  • Nagaraju M, Chawla P. Systematic review of deep learning techniques ...
  • Alruwaili M, Abd El-Ghany S, Shehab A. An enhanced plant ...
  • Shantkumari M, Uma S. Machine learning techniques implementation for detection ...
  • Ashokkumar K, Parthasarathy S, Nandhini S, Ananthajothi K. Prediction of ...
  • Ansari AS, Jawarneh M, Ritonga M, Jamwal P, Mohammadi MS, ...
  • Lin J, Chen X, Pan R, Cao T, Cai J, ...
  • Phukhronghin K, Muangklang E, Somwang P, Kosum K, Promarin K, ...
  • Arsenovic M, Karanovic M, Sladojevic S, Anderla A, Stefanovic D. ...
  • Kamilaris A, Prenafeta-Boldú FX. Deep learning in agriculture: A survey. ...
  • Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, ...
  • Jogekar R, Tiwari N, editors. Summary of Leaf-based plant disease ...
  • Khan RU, Khan K, Albattah W, Qamar AM. Image-based detection ...
  • Doh B, Zhang D, Shen Y, Hussain F, Doh RF, ...
  • Chandra AL, Desai SV, Guo W, Balasubramanian VN. Computer vision ...
  • Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm ...
  • Fuentes A, Yoon S, Kim SC, Park DS. A robust ...
  • Joshi RC, Kaushik M, Dutta MK, Srivastava A, Choudhary N. ...
  • Fenu G, Malloci FM. Using multioutput learning to diagnose plant ...
  • Vashisht S, Kumar P, Trivedi MC, editors. Design of a ...
  • Ahmad I, Hamid M, Yousaf S, Shah ST, Ahmad MO. ...
  • Boulent J, Foucher S, Théau J, St-Charles P-L. Convolutional neural ...
  • Liu B, Zhang Y, He D, Li Y. Identification of ...
  • Suma V, Shetty RA, Tated RF, Rohan S, Pujar TS, ...
  • Morbekar A, Parihar A, Jadhav R, editors. Crop disease detection ...
  • Ponnusamy V, Coumaran A, Shunmugam AS, Rajaram K, Senthilvelavan S, ...
  • Huayhongthong P, Rerk-u-suk S, Booddee S, Padungweang P, Warasup K, ...
  • Mohanty SP, Hughes DP, Salathé M. Using deep learning for ...
  • Singh D, Jain N, Jain P, Kayal P, Kumawat S, ...
  • Lu Y, Young S. A survey of public datasets for ...
  • Bloice MD, Stocker C, Holzinger A. Augmentor: an image augmentation ...
  • Weiss K, Khoshgoftaar TM, Wang D. A survey of transfer ...
  • Yuan L, Chen Y, Wang T, Yu W, Shi Y, ...
  • Tan C, Sun F, Kong T, Zhang W, Yang C, ...
  • Deng J, Dong W, Socher R, Li L-J, Li K, ...
  • Simonyan K, Zisserman A. Very deep convolutional networks for large-scale ...
  • Bahrampour S, Ramakrishnan N, Schott L, Shah M. Comparative study ...
  • Carneiro T, Da Nóbrega RVM, Nepomuceno T, Bian G-B, De ...
  • Too EC, Yujian L, Njuki S, Yingchun L. A comparative ...
  • Tang Y. TF. Learn: TensorFlow's high-level module for distributed machine ...
  • Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, ...
  • Jin H, Li Y, Qi J, Feng J, Tian D, ...
  • Shantkumari M, Uma S. Grape leaf image classification based on ...
  • Guo W, Feng Q, Li X, Yang S, Yang J. ...
  • Pawar A, Singh M, Jadhav S, Kumbhar V, Singh T, ...
  • Mavaddati S. Rice classification and quality detection based on sparse ...
  • Javidan SM, Banakar A, Vakilian KA, Ampatzidis Y. Diagnosis of ...
  • Pal A, Kumar V. AgriDet: Plant Leaf Disease severity classification ...
  • Sharma V, Tripathi AK, Mittal H. DLMC-Net: Deeper lightweight multi-class ...
  • Rohani M, Farsi H, Mohamadzadeh S. Deep Multi-task Convolutional Neural ...
  • Gaurav K, Kumar A, Singh P, Kumari A, Kasar M, ...
  • Farhoodi M, Toloie Eshlaghy A, Motadel M. A Proposed Model ...
  • نمایش کامل مراجع