A machine learning approach to the optimal control of the customer dynamics
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 156
فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_APRIE-11-2_005
تاریخ نمایه سازی: 23 خرداد 1403
چکیده مقاله:
We consider a continuous model of the optimal control of the customer dynamics based on marketing policies as a non-autonomous system of ODEs. The model tracks the history of the simultaneous changes from the beginning to the current time for the evolution of the company's regular, referral, and potential customers. We then present a new supervised machine-learning algorithm for the numerical simulation of the problem. The proposed learning algorithm implements a polynomial kernel to simplify the formulation of the method. To avoid computational complexity, the Bernstein kernels are used to get a simple optimization marketing strategy by using the Support Vector Regression (SVR) in a least-squares framework. Some numerical experiments are carried out to support the proposed model and the method. The method provides approximate numerical results with high accuracy by kernels of polynomials of low degree. The running time of the technique is also illustrated versus the increasing number of training points to see the polynomial behavior of the running time.
کلیدواژه ها:
نویسندگان
Seyed Emadi
Department of Industrial Management, Yazd Branch, Islamic Azad University, Yazd, Iran.
Abolfazl Sadeghian
Department of Industrial Management, Yazd Branch, Islamic Azad University, Yazd, Iran.
Mozhde Rabbani
Department of Industrial Management, Yazd Branch, Islamic Azad University, Yazd, Iran.
Hassan Dehghan Dehnavi
Department of Industrial Management, Yazd Branch, Islamic Azad University, Yazd, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :