Global stability and Hopf bifurcation of delayed fractional-order complex-valued BAM neural network with an arbitrary number of neurons
محل انتشار: مجله مدلسازی ریاضی، دوره: 11، شماره: 1
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 137
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMO-11-1_002
تاریخ نمایه سازی: 19 خرداد 1403
چکیده مقاله:
In this paper, a general class of fractional-order complex-valued bidirectional associative memory neural network with time delay is considered. This neural network model contains an arbitrary number of neurons, i.e. one neuron in the X-layer and other neurons in the Y-layer. Hopf bifurcation analysis of this system will be discussed. Here, the number of neurons, i.e., n can be chosen arbitrarily. We study Hopf bifurcation by taking the time delay as the bifurcation parameter. The critical value of the time delay for the occurrence of Hopf bifurcation is determined. Moreover, we find two kinds of appropriate Lyapunov functions that under some sufficient conditions, global stability of the system is obtained. Finally, numerical examples are also presented.
کلیدواژه ها:
Neural Network ، fractional ordinary differential equations ، Hopf bifurcation ، time delay ، Lyapunov function
نویسندگان
Elham Javidmanesh
Department of Applied Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
Alireza Zamani Bahahbadi
Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran