Strategies for disease diagnosis by machine learning techniques

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 149

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JMMO-11-3_002

تاریخ نمایه سازی: 19 خرداد 1403

چکیده مقاله:

Machine learning (ML) techniques have become a point of interest in medical research. To predict the existence of a specified disease, two methods K-Nearest Neighbors (KNN) and logistic regression can be used, which are based on distance and probability, respectively. These methods have their problems, which leads us to use the ideas of both methods to improve the prediction of disease outcomes. For this sake, first, the data is transformed into another space based on logistic regression. Next, the features are weighted according to their importance in this space. Then, we introduce a new distance function to predict disease outcomes based on the neighborhood radius. Lastly, to decrease the CPU time, we present a partitioning criterion for the data.

کلیدواژه ها:

Prediction ، Machine learning ، Classification ، penalized logistic Ridge regression

نویسندگان

Elham Hafezieh

University of Mazandaran, Babolsar, Iran

Ali Tavakoli

University of Mazandaran, Babolsar, Iran

Mashaallah Matinfar

University of Mazandaran, Babolsar, Iran