An intrusion detection system with a parallel multi-layer neural network
محل انتشار: مجله مدلسازی ریاضی، دوره: 9، شماره: 3
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 202
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMO-9-3_008
تاریخ نمایه سازی: 19 خرداد 1403
چکیده مقاله:
Intrusion detection is a very important task that is responsible for supervising and analyzing the incidents that occur in computer networks. We present a new anomaly-based intrusion detection system (IDS) that adopts parallel classifiers using RBF and MLP neural networks. This IDS constitutes different analyzers each responsible for identifying a certain class of intrusions. Each analyzer is trained independently with a small category of related features. The proposed IDS is compared extensively with existing state-of-the-art methods in terms of classification accuracy . Experimental results demonstrate that our IDS achieves a true positive rate (TPR) of ۹۸.۶۰\% on the well-known NSL-KDD dataset and therefore this method can be considered as a new state-of-the-art anomaly-based IDS.
کلیدواژه ها:
نویسندگان
Mohammad Hassan Nataj Solhdar
Shohadaye Hoveizeh University of Technology, Dasht-e Azadegan, Khuzestan, Iran
Mehdi Janinasab Solahdar
Islamic Azad University, Mahalat Branch, Mahalat, Iran
Sadegh Eskandari
Department of Computer Science, University of Guilan, Rasht, Iran