Reliability Assessment of Machine Learning Methods in Seismic Damage Detection of Reinforced Concrete Buildings
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 120
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICCNC01_030
تاریخ نمایه سازی: 19 خرداد 1403
چکیده مقاله:
Machine learning (ML) techniques, have surfaced as a prospective option for identifyingdamage recently. They excel in swiftly, precisely, and automatically handling extensive datasetsfrom various origins. Evaluating the effectiveness of diverse ML techniques has become essentialdue to the growing adoption of ML in damage identification in structures. These evaluations setstandards for assessing alternative methods and reveal perspectives on the fundamental data andstructures. The current study investigated two ML classifiers: Random Forests (RF) and SupportVector Machine (SVM). The primary objective was to detect damage grades in reinforced concrete(RC) buildings in Nepal, Ecuador, Haiti, and South Korea. Moreover, a new metric was introducedto evaluate the "reliability" of outcomes derived from ML, focusing on the probability ofmisidentifying grades of damage. This approach contributes to a deeper comprehension of thereliability of ML outcomes. Findings demonstrated the superior efficacy of the RF classifier,outperforming the SVM classifier in accuracy across three datasets. The reliability metric indicatedaverage reliabilities of ۸۲% for RF and ۷۸% for SVM. This research underscores the efficacy ofML techniques, specifically highlighting the RF classifier's reliability in damage detection of RCbuildings.
کلیدواژه ها:
Damage Detection – Machine Learning – Reliability – RC buildings
نویسندگان
Pouya Mousavian
Islamic Azad University Central Tehran Branch, Tehran, Iran
Shahriar Tavousi Tafreshi
Islamic Azad University Central Tehran Branch, Tehran, Iran
Razi Sheikholeslami
Sharif University of Technology, Tehran, Iran,