AI-enhanced flood forecasting: Harnessing upstream data for downstream protection

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 102

فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ARWW-10-2_004

تاریخ نمایه سازی: 19 خرداد 1403

چکیده مقاله:

This research devised a cutting-edge artificial intelligence methodology to enhance flood forecasting in Quebec, Canada, an area frequently affected by floods. The core of this project was creating a novel artificial intelligence (AI) model (i.e., Generalized Structure of Group Method of Data Handling) dedicated to the early detection of potential flood events. Utilizing data from two key hydrometric stations, Saint-Charles and Huron, located within the region, the study aggregated data from ۱۵-minute intervals into comprehensive hourly averages. An initial analysis sought to understand the relationship between river flow rates and the environmental factors of temperature and precipitation upstream and downstream. The investigation uncovered intricate relationships among these factors, presenting challenges in accurately predicting floods. To address this, a specialized AI model was developed to translate the flow data from the Huron station to predict potential flooding at the Saint-Charles station. This model, leveraging ۴۸-hour lag data from upstream, was designed to forecast flood events at the Saint-Charles station with lead times ranging from one to eighteen hours. The model demonstrated significant predictive accuracy, with a correlation coefficient surpassing ۰.۹. Consequently, this innovative AI model emerges as a promising tool for improving Quebec's flood prediction and early-warning systems.

نویسندگان

Isa Ebtehaj

Department of Soils and Agri-Food Engineering, Université Laval, Québec, Canada.

Hossein Bonakdari

Department. of Civil Engineering, University of Ottawa, Ottawa, Canada.

Baram Gharabaghi

School of Engineering, University of Guelph, Guelph, Canada

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Azimi, H., Bonakdari, H., Ebtehaj, I. (۲۰۱۷) ‘A highly efficient ...
  • Ebtehaj, I., and Bonakdari, H. (۲۰۱۶) ‘A support vector regression-firefly ...
  • نمایش کامل مراجع