Introducing an innovative framework for Mineral Exploration through theintegration of Advanced Machine Learning Methodologies within thedomain of Geophysics

سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 234

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

GEOMINE01_059

تاریخ نمایه سازی: 13 خرداد 1403

چکیده مقاله:

This study focuses on the challenges faced by mineral exploration in Iran and proposes theintegration of Python programming and machine learning to overcome these challenges. Itexplores the complexities of geological and topographical mapping, remote sensing applications,geophysics, and core drilling. Python libraries like GDAL, GeoPandas, Spectral Python, OpenCV,ObsPy, and GeoMagPy are highlighted for their ability to automate and enhance various aspectsof mineral exploration. The study emphasizes the importance of accurate geological mapping andthe potential of deep learning methods in analyzing remote sensing data. It also discusses theapplication of joint inversion techniques for interpreting exploration data and improving theunderstanding of magnetotelluric data. Despite challenges related to insufficient data and ashortage of specialists, the adoption of Python programming and machine learning techniques canlead to significant advancements in mineral exploration in Iran, fostering economic developmentand job creation in the mining sector.

کلیدواژه ها:

نویسندگان

Sara Momenipour

Master in Science Economic Geology

Nima Dolatabadi

Master in Science Geophyics