X-SHAoLIM: Novel Feature Selection Framework for Credit Card Fraud Detection

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 101

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-12-1_005

تاریخ نمایه سازی: 10 خرداد 1403

چکیده مقاله:

Fraud in financial data is a significant concern for both businesses and individuals. Credit card transactions involve numerous features, some of which may lack relevance for classifiers and could lead to overfitting. A pivotal step in the fraud detection process is feature selection, which profoundly impacts model accuracy and execution time. In this paper, we introduce an ensemble-based, explainable feature selection framework founded on SHAP and LIME algorithms, called "X-SHAoLIM". We applied our framework to diverse combinations of the best models from previous studies, conducting both quantitative and qualitative comparisons with other feature selection methods. The quantitative evaluation of the "X-SHAoLIM" framework across various model combinations revealed consistent accuracy improvements on average, including increases in Precision (+۵.۶), Recall (+۱.۵), F۱-Score (+۳.۵), and AUC-PR (+۶.۷۵). Beyond enhanced accuracy, our proposed framework, leveraging explainable algorithms like SHAP and LIME, provides a deeper understanding of features' importance in model predictions, delivering effective explanations to system users.

نویسندگان

Sajjad Alizadeh Fard

School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran.

Hossein Rahmani

School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • S. Mittal and S. Tyagi, “Performance Evaluation of Machine Learning ...
  • S. Beigi and M. R. Amin Naseri, “Credit Card Fraud ...
  • R. Yan, Y. Liu, R. Jin, and A. Hauptmann, “On ...
  • N. V. Chawla, N. Japkowicz, and A. Kotcz, “Editorial,” ACM ...
  • Y. Russac, O. Caelen, and L. He-Guelton, “Embeddings of Categorical ...
  • C. Guo and F. Berkhahn, “Entity Embeddings of Categorical Variables,” ...
  • S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland, ...
  • A. Adadi and M. Berrada, “Peeking Inside the Black-Box: A ...
  • Małgorzata Magdziarczyk, “RIGHT TO BE FORGOTTEN IN LIGHT OF REGULATION ...
  • R. Omobolaji Alabi, A. Almangush, M. Elmusrati, I. Leivo, and ...
  • Rasheed Omobolaji Alabi, M. Elmusrati, Ilmo Leivo, Alhadi Almangush, and ...
  • A. Gramegna and P. Giudici, “SHAP and LIME: An Evaluation ...
  • I. Sohony, R. Pratap, and U. Nambiar, “Ensemble learning for ...
  • A. Dal Pozzolo, O. Caelen, Y.-A. Le Borgne, S. Waterschoot, ...
  • V. Van Vlasselaer et al., “APATE: A novel approach for ...
  • M. Zareapoor and P. Shamsolmoali, “Application of Credit Card Fraud ...
  • S. D. Penmetsa and S. Mohammed, “Ensemble Techniques for Credit ...
  • K. Randhawa, C. K. Loo, M. Seera, C. P. Lim, ...
  • E. Figuerola Ullastres, “Credit Card Fraud Detection using Ensemble Learning ...
  • A. Correa Bahnsen, D. Aouada, A. Stojanovic, and B. Ottersten, ...
  • Y. K. Saheed, M. A. Hambali, M. O. Arowolo, and ...
  • . E. Ileberi, Y. Sun, and Z. Wang, “A machine ...
  • Bharat Kumar Padhi, S. Chakravarty, B. Naik, Radha Mohan Pattanayak, ...
  • van, Process Mining Handbook. Springer Nature ...
  • W. Rizzi, C. Di Francescomarino, and F. M. Maggi, “Explainability ...
  • R. Sindhgatta, C. Ouyang, and C. Moreira, “Exploring Interpretability for ...
  • I. Psychoula, A. Gutmann, P. Mainali, S. H. Lee, P. ...
  • W. E. Marcilio and D. M. Eler, “From explanations to ...
  • T.-Y. Wu and Y.-T. Wang, “Locally Interpretable One-Class Anomaly Detection ...
  • Kaggle, “Credit Card Fraud Detection,” www.kaggle.com, ۲۰۱۸. https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud ...
  • K. Shenoy, “Credit Card Transactions Fraud Detection Dataset,” Kaggle.com, ۲۰۱۹. ...
  • نمایش کامل مراجع