Enhancing Emotion Classification via EEG Signal Frame Selection

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 123

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-12-1_007

تاریخ نمایه سازی: 10 خرداد 1403

چکیده مقاله:

The classification of emotions using electroencephalography (EEG) signals is inherently challenging due to the intricate nature of brain activity. Overcoming inconsistencies in EEG signals and establishing a universally applicable sentiment analysis model are essential objectives. This study introduces an innovative approach to cross-subject emotion recognition, employing a genetic algorithm (GA) to eliminate non-informative frames. Then, the optimal frames identified by the GA undergo spatial feature extraction using common spatial patterns (CSP) and the logarithm of variance. Subsequently, these features are input into a Transformer network to capture spatial-temporal features, and the emotion classification is executed using a fully connected (FC) layer with a Softmax activation function. Therefore, the innovations of this paper include using a limited number of channels for emotion classification without sacrificing accuracy, selecting optimal signal segments using the GA, and employing the Transformer network for high-accuracy and high-speed classification. The proposed method undergoes evaluation on two publicly accessible datasets, SEED and SEED-V, across two distinct scenarios. Notably, it attains mean accuracy rates of ۹۹.۹۶% and ۹۹.۵۱% in the cross-subject scenario, and ۹۹.۹۳% and ۹۹.۴۳% in the multi-subject scenario for the SEED and SEED-V datasets, respectively. Noteworthy is the outperformance of the proposed method over the state-of-the-art (SOTA) in both scenarios for both datasets, thus underscoring its superior efficacy. Additionally, comparing the accuracy of individual subjects with previous works in cross subject scenario further confirms the superiority of the proposed method for both datasets.

کلیدواژه ها:

نویسندگان

Masoumeh Esmaeiili

Electrical and Computer Engineering Department, Semnan University, Semnan, Iran.

Kourosh Kiani

Electrical and Computer Engineering Department, Semnan University, Semnan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • S. Liu, Z. Wang., Y. An, J. Zhao, Y. Zhao, ...
  • W. Y. Hsu, C. C. Lin, M. S. Ju, & ...
  • R. Rastgoo, & K. Kiani, “Face recognition using fine-tuning of ...
  • K. Kiani, R. Hematpour, & R. Rastgoo, “Automatic grayscale image ...
  • N. Majidi, K. Kiani, & R. Rastgoo, “A deep model ...
  • F. Alinezhad, K. Kiani, & R. Rastgoo, “A Deep Learning-based ...
  • S. Zarbafi, K. Kiani, & R. Rastgoo, “Spoken Persian digits ...
  • A. Fakhari & K. Kiani, “A new restricted boltzmann machine ...
  • A. Fakhari& K. Kiani, “An image restoration architecture using abstract ...
  • S. Sartipi, M. Cetin, “Adversarial Discriminative Domain Adaptation and Transformers ...
  • Z. Wang, M. Chen, & G. Feng, “Study on Driver ...
  • X. Luan, G. Zhang, & K. Yang, “A Bi-hemisphere Capsule ...
  • Y. Wei, Y. Liu, C. Li, J. Cheng, R. Song, ...
  • M. Azarbad, H. Azami, S. Sanei, & A. Ebrahimzadeh, “A ...
  • J. Xie, J. Zhang, J. Sun, Z. Ma, L. Qin, ...
  • T. Yan, T. Jingtian, & G. Andong, “Multi-class EEG classification ...
  • M. Esmaeili, M. Zahedi, “Static Partitioning of EEG Signals by ...
  • A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, ...
  • Z. Li, G. Zhang, L. Wang, J. Wei, &J. Dang, ...
  • A. Iyer, S. S. Das, R. Teotia, S. Maheshwari, &R. ...
  • S. N. V. Kanuboyina, T. Shankar, & R. R. Venkata ...
  • J. Zong, X. Xiong, J. Zhou, Y. Ji, D. Zhou, ...
  • O. Almanza-Conejo, D. L. Almanza-Ojeda, J. L. Contreras-Hernandez, & M. ...
  • Z. Han, H. Chang, X. Zhou, J. Wang, I. Wang, ...
  • S. Mohammadzadeh Koumleh, H. Hassanpour, M. Esmaeili, A. Gholami, “Various ...
  • K. Kamble, & J. Sengupta, “A comprehensive survey on emotion ...
  • M. Esmaeili, A. Arjomandzadeh, R. Shams & M. Zahedi, “An ...
  • R. Chen, Z. Sun, X. Diao, H. Wang, J. Wang, ...
  • J. W. Li, D. Lin, Y. Che, J. J. Lv, ...
  • K. S. Kamble, J. Sengupta, “Ensemble machine learning-based affective computing ...
  • A. Goshvarpour, A. Goshvarpour, “Novel high-dimensional phase space features for ...
  • J. Li, Z. Zhang, H. He, “Hierarchical Convolutional Neural Networks ...
  • R. R. Immanuel, S. K. B. Sangeetha, “ANALYSIS OF DIFFERENT ...
  • H. Chao, Y. Liu, “Emotion recognition from multi-channel EEG signals ...
  • X. Qiu, S. Wang, R. Wang, Y. Zhang, &L. Huang, ...
  • M. Jehosheba Margaret, N. M. Masoodhu Banu, “Performance analysis of ...
  • W. L. Zheng, B. L. Lu, “Investigating critical frequency bands ...
  • R. N. Duan, J. Y. Zhu, B. L. Lu, “Differential ...
  • W. Liu, J. L. Qiu, W. L. Zheng, B. L. ...
  • B. Fu, F. Li, Y. Niu, H. Wu, Y. Li, ...
  • W. L. Zheng, H. T. Guo, & B. L. Lu, ...
  • F. Baradaran, A. Farzan, S. Danishvar & S. Sheykhivand, “Customized ...
  • L. A. Moctezuma, M. Molinas, “EEG Channel-Selection Method for Epileptic-Seizure ...
  • M. Esmaeili, M. Zahedi, & N. Hafezi-Motlagh, “Performance Analysis of ...
  • H. Cizmeci, C. Ozcan, “Enhanced deep capsule network for EEG-based ...
  • F. M. Alotaibi, “An AI-Inspired Spatio-Temporal Neural Network for EEG-Based ...
  • L. Gong, M. Li, T. Zhang, & W. Chen, “EEG ...
  • Y. Zhang, Y. Peng, J. Li, & W. Kong, “SIFIAE: ...
  • V. Jadhav, N. Tiwari, & M. Chawla, “EEG-based Emotion Recognition ...
  • L. Zhu, F. Yu, A. Huang, N. Ying, & J. ...
  • S. Y. Dharia, C. E. Valderrama, & S. G. Camorlinga, ...
  • T. H. Li, W. Liu, W. L. Zheng, & B. ...
  • H. Liu, H. Guo, & W. Hu, “EEG-based emotion classification ...
  • X. Shen, X. Liu, X. Hu, D. Zhang, & S. ...
  • W. Guo, & Y. Wang, “Convolutional gated recurrent unit-driven multidimensional ...
  • W. Guo, Y. Li, M. Liu, R. Ma, & Y. ...
  • Q. M. U. Haq, L. Yao, W. Rahmaniar, F. Islam, ...
  • X. Zhang, D. Huang, H. Li, Y. Zhang, Y. Xia, ...
  • J. Li, W. Pan, H. Huang, J. Pan, & F. ...
  • M. Esmaeili, K. Kiani, “Generating personalized facial emotions using emotional ...
  • M. Jin, C. Du, H. He, T. Cai, J. Li. ...
  • نمایش کامل مراجع