Iranian Vehicle Images Dataset for Object Detection Algorithm
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 12، شماره: 1
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 205
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-12-1_011
تاریخ نمایه سازی: 10 خرداد 1403
چکیده مقاله:
Providing a dataset with a suitable volume and high accuracy for training deep neural networks is considered to be one of the basic requirements in that a suitable dataset in terms of the number and quality of images and labeling accuracy can have a great impact on the output accuracy of the trained network. The dataset presented in this article contains ۳۰۰۰ images downloaded from online Iranian car sales companies, including Divar and Bama sites, which are manually labeled in three classes: car, truck, and bus. The labels are in the form of ۵۷۶۵ bounding boxes, which characterize the vehicles in the image with high accuracy, ultimately resulting in a unique dataset that is made available for public use.The YOLOv۸s algorithm, trained on this dataset, achieves an impressive final precision of ۹۱.۷% for validation images. The Mean Average Precision (mAP) at a ۵۰% threshold is recorded at ۹۲.۶%. This precision is considered suitable for city vehicle detection networks. Notably, when comparing the YOLOv۸s algorithm trained with this dataset to YOLOv۸s trained with the COCO dataset, there is a remarkable ۱۰% increase in mAP at ۵۰% and an approximately ۲۲% improvement in the mAP range of ۵۰% to ۹۵%.
کلیدواژه ها:
نویسندگان
Pouria Maleki
Department of Electrical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.
Abbas Ramazani
Department of Electrical Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.
Hassan Khotanlou
Department of Computer Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.
Sina Ojaghi
School of Computer and Electrical Engineering, University of Tehran, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :