مدل سازی کیفی منابع آب زیرزمینی با استفاده از شبکه عصبی مصنوعی و الگوریتم بهینه سازی گرگ خاکستری: مورد مطالعه دشت کبودرآهنگ، همدان، ایران

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 140

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JEHE-11-1_002

تاریخ نمایه سازی: 12 اردیبهشت 1403

چکیده مقاله:

زمینه و هدف: : امروزه با توجه به تغییرات اقلیمی و کاهش نزولات جوی در سطح کشور و به خصوص استان همدان، نرخ دسترسی به منابع آب سطحی کاهش یافته و لذا، میزان برداشت از منابع آب زیرزمینی به شدت افزایش یافته است که این موضوع موجب تغییر در کیفیت این منابع برای مصارف گوناگون شده است. در نتیجه، لزوم پایش کیفی منابع آب زیرزمینی نیز اهمیت دوچندانی یافته است. از این رو، در این پژوهش با استفاده از مدل ترکیبی شبکه عصبی مصنوعی و الگوریتم فراابتکاری گرگ خاکستری نسبت به مدل سازی کیفی منابع آب زیرزمینی دشت کبودرآهنگ واقع در شمال غربی استان همدان در سال ۱۴۰۱ اقدام شد. مواد و روش ها: در این پژوهش، داده های کیفی منابع آب زیرزمینی مربوط به چاه های دشت کبودرآهنگ به سه بخش آموزش (%۷۰)، اعتبارسنجی (%۱۵) و آزمون (%۱۵) تقسیم و با استفاده از مدل ترکیبی شبکه عصبی مصنوعی و الگوریتم فراابتکاری گرگ خاکستری مدل سازی کیفی منابع آب زیرزمینی دشت کبودرآهنگ انجام شد. یافته ها: نتایج نشان داد که مدل ارائه شده قابلیت بالایی در پیش بینی کیفیت آب زیرزمینی بر اساس سه متغیر pH، EC و TDS داشته است. مقدار ۰/۹۹۷۵ = R نشان دهنده پیشگویی بالای متغیرها بود. نتایج حاصل از پیاده سازی شبکه عصبی مصنوعی بیان گر صحت بالا و همچنین قابلیت بالای پیش بینی و خطای اندک مدل بود که این خطا با کمک الگوریتم گرگ خاکستری کاهش یافت. بنابراین، می توان اذعان داشت علی رغم این که الگوریتم شبکه عصبی مصنوعی تا حد بالایی قادر به پیش بینی کیفیت آب زیرزمینی در منطقه مورد مطالعه بود، الگوریتم گرگ خاکستری با کاهش خطای پیش بینی، این عملکرد را تکمیل و مقدار بهینگی مدل را افزایش داد. نتیجه گیری: الگوریتم های شبکه عصبی مصنوعی و بهینه سازی گرگ خاکستری مکمل هم بوده و عملکرد خوبی برای پیش بینی تغییرات کیفی منابع آب زیرزمینی از خود نشان می دهند.

نویسندگان

مهدی پیرزاد

M.Sc. in Environmental Engineering, Department of Environmental Engineering, College of Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran.

سهیل سبحان اردکانی

Ph.D. in Environmental Science, Professor in Environmental Science, Department of the Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Shiklomanov IA. Appraisal and assessment of world water resources. Water ...
  • Sobhanardakani S, Maanijou M, Asadi H. Investigation of Pb, Cd, ...
  • Sobhanardakan S, Taghavi L, Shahmoradi B, et al. Groundwater quality ...
  • Makarigakis AK, Jimenez-Cisneros BE. UNESCO's contribution to face global water ...
  • Yari AR, Sobhanardakan S. Water quality assessment of groundwater resources ...
  • Sobhanardakani S. Evaluation of the water quality pollution indices for ...
  • Sabzevari Y, Zeinivand H. Evaluation of groundwater quality for different ...
  • Askari J, Egdernezhad A. Groundwater modeling using artificial intelligence methods ...
  • Alizamir M, Sobhanardakani S. An artificial neural network - particle ...
  • Aldhyani THH, Al-Yaari M, Alkahtani H, et al. Water quality ...
  • Alizamir M, Sobhanardakani S. A comparison of performance of artificial ...
  • Al-Adhaileh MH, Aldhyani THH, Alsaade FW, et al. Groundwater quality: ...
  • Rajaee T, Pouraslan F. Temporal and spatial forecast of Davarzan ...
  • Alizamir M, Sobhanardakani S, Hasanalipour Shahrabadi A. Prediction of heavy ...
  • Farooq MU, Zafar AM, Raheem W, et al. Assessment of ...
  • Che Nordin NF, Mohd NS, Koting S, et al. Groundwater ...
  • Ghobadi A, Cheraghi M, Sobhanardakani S, et al. Groundwater quality ...
  • Bui DT, Khosravi K, Tiefenbacher J, et al. Improving prediction ...
  • Alizamir M, Kazemi Z, Kazemi Z, et al. Investigating landfill ...
  • Abbasi Teshnizi F, Nouri Emamzadehei MM. Assessment of groundwater quality ...
  • Emami S, Noruzi-Sarkarabad R, Choopan Y. Use of artificial neural ...
  • Sadatinejadi, SJ, Ghasemi L, Yousefi H. Redesign of groundwater monitoring ...
  • Emami H, Emami S. Presentating a New Approach for evaluating ...
  • Bahrami F, Egdernezhad A. Comparison of Artificial Neural Network and ...
  • Majumder P, Eldho TI. Artificial Neural Network and Grey Wolf ...
  • Tikhamarine Y, Souag-Gamane D, Najah Ahmed A, et al. Improving ...
  • Moayedi H, Salari M, Dehrashid AA, et al. Groundwater quality ...
  • Bahmani O, Zali A. Investigation and determination of the spatial ...
  • Göçken M, Özçalıcı M, Boru A, et al. Integrating metaheuristics ...
  • Wang J, Wang J. Forecasting stock market indexes using principle ...
  • Chi T. Understanding Chinese consumer adoption of apparel mobile commerce: ...
  • Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv ...
  • Ahaninjan K, Egdernezhad A. Modeling qualitative parameters of SAR, EC, ...
  • Shiklomanov IA. Appraisal and assessment of world water resources. Water ...
  • Sobhanardakani S, Maanijou M, Asadi H. Investigation of Pb, Cd, ...
  • Sobhanardakan S, Taghavi L, Shahmoradi B, et al. Groundwater quality ...
  • Makarigakis AK, Jimenez-Cisneros BE. UNESCO's contribution to face global water ...
  • Yari AR, Sobhanardakan S. Water quality assessment of groundwater resources ...
  • Sobhanardakani S. Evaluation of the water quality pollution indices for ...
  • Sabzevari Y, Zeinivand H. Evaluation of groundwater quality for different ...
  • Askari J, Egdernezhad A. Groundwater modeling using artificial intelligence methods ...
  • Alizamir M, Sobhanardakani S. An artificial neural network - particle ...
  • Aldhyani THH, Al-Yaari M, Alkahtani H, et al. Water quality ...
  • Alizamir M, Sobhanardakani S. A comparison of performance of artificial ...
  • Al-Adhaileh MH, Aldhyani THH, Alsaade FW, et al. Groundwater quality: ...
  • Rajaee T, Pouraslan F. Temporal and spatial forecast of Davarzan ...
  • Alizamir M, Sobhanardakani S, Hasanalipour Shahrabadi A. Prediction of heavy ...
  • Farooq MU, Zafar AM, Raheem W, et al. Assessment of ...
  • Che Nordin NF, Mohd NS, Koting S, et al. Groundwater ...
  • Ghobadi A, Cheraghi M, Sobhanardakani S, et al. Groundwater quality ...
  • Bui DT, Khosravi K, Tiefenbacher J, et al. Improving prediction ...
  • Alizamir M, Kazemi Z, Kazemi Z, et al. Investigating landfill ...
  • Abbasi Teshnizi F, Nouri Emamzadehei MM. Assessment of groundwater quality ...
  • Emami S, Noruzi-Sarkarabad R, Choopan Y. Use of artificial neural ...
  • Sadatinejadi, SJ, Ghasemi L, Yousefi H. Redesign of groundwater monitoring ...
  • Emami H, Emami S. Presentating a New Approach for evaluating ...
  • Bahrami F, Egdernezhad A. Comparison of Artificial Neural Network and ...
  • Majumder P, Eldho TI. Artificial Neural Network and Grey Wolf ...
  • Tikhamarine Y, Souag-Gamane D, Najah Ahmed A, et al. Improving ...
  • Moayedi H, Salari M, Dehrashid AA, et al. Groundwater quality ...
  • Bahmani O, Zali A. Investigation and determination of the spatial ...
  • Göçken M, Özçalıcı M, Boru A, et al. Integrating metaheuristics ...
  • Wang J, Wang J. Forecasting stock market indexes using principle ...
  • Chi T. Understanding Chinese consumer adoption of apparel mobile commerce: ...
  • Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Adv ...
  • Ahaninjan K, Egdernezhad A. Modeling qualitative parameters of SAR, EC, ...
  • نمایش کامل مراجع