NE-GCN: Advancing Knowledge Graph Link Prediction with Node۲vec-Enhanced Graph Convolutional Networks
محل انتشار: پنجمین کنفرانس بین المللی محاسبات نرم
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 110
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CSCG05_133
تاریخ نمایه سازی: 9 اردیبهشت 1403
چکیده مقاله:
Knowledge graphs (KGs) play a vital role in enhancing search results and recommendationsystems. With the rapid increase in the size of the KGs, they are becoming inaccuracy andincomplete. This problem can be solved by the knowledge graph completion methods. In this paperwe use a novel method for knowledge graph link prediction named Node۲vec Enhanced GraphConvolutional Network (NE-GCN), for computing pairwise occurrences of entity-relation pairs inthe dataset to construct a joint learning model. Given a knowledge graph, NE-GCN constructs asingle graph considering entities and relations as individual nodes. NE-GCN then computesweights for edges among nodes based on the pairwise occurrence of entities and relations. Next,uses Graph Convolution neural Network (GCN) to update vector representations for entity andrelation nodes. This work opens up new possibilities for graph-based learning models andrepresents a major leap in the field.
کلیدواژه ها:
نویسندگان
Mohammadreza Ghaffarian
School of Engineering Science, University of Tehran, Tehran, Iran;
Rooholah Abedian
School of Engineering Science, University of Tehran, Tehran, Iran
Ali Moeini
School of Engineering Science, University of Tehran, Tehran, Iran