Optimal k-Medoid machine learning method for ۳D placement of unmanned aerial vehicles in emergency or disaster areas

سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 80

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

NEEC07_021

تاریخ نمایه سازی: 3 اردیبهشت 1403

چکیده مقاله:

The use of unmanned aerial vehicles (UAVs) is a promising approach to increase the agility and flexibility of future wireless networks. UAVs are considered aerial BSs that can increase the coverage or capacity of the network by moving the supply toward the demand if necessary. In emergency scenarios where many ground base statons are not available, mobile base statons based on UAVs can provide a good soluton to support ground terminals in the affected area thanks to their flexibility and affordability. In this paper, using the k-Medoid machine learning method for clustering, the optmal ۳D placement of UAVs for various network objectves such as minimizing the number of UAVs, minimizing transmission power, and maximizing the number of covered users in a network Wireless is found in the affected area. Finally, the numerical results show how the proposed algorithm improves the performance of previous algorithms in terms of maximum coverage and capacity.

نویسندگان

Nooshin Boroumand Jazi

PHD student of Electrical Engineering, Islamic Azad University, Najafabad Branch, Najafabad, Iran

Farhad Faghani

Assistant prof of Electrical Engineering, Islamic Azad University, Najafabad Branch, Najafabad, Iran

Mahmoud Daneshvar Farzanegan

Assistant prof of Electrical Engineering, Islamic Azad University, Najafabad Branch, Najafabad, Iran