Applications of Nearest Neighbor Search Algorithm Toward Efficient Rubber-Based Solid Waste Management in Concrete
محل انتشار: ژورنال مهندسی عمران، دوره: 8، شماره: 4
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 129
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_CEJ-8-4_006
تاریخ نمایه سازی: 1 اردیبهشت 1403
چکیده مقاله:
Indeed, natural processes of discarding rubber waste have many disadvantages for the environment. As a result, multiple researchers suggested addressing this problem by recycling rubber as an aggregate in concrete mixtures. Previously, numerous studies have been undertaken experimentally to investigate the properties of rubberized concrete. Furthermore, investigations were carried out to develop estimating techniques to precisely specify the generated concrete's characteristics, making its use in real-life applications easier. However, there is still a gap in the conducted studies on the performance of the k-nearest neighbor algorithm. Hence, this research explores the accuracy of using the k-nearest neighbor's algorithm in predicting the compressive and tensile strength and the modulus of elasticity of rubberized concrete. It will be done by developing an optimized machine learning model using the aforementioned method and then benchmarking its results to the outcomes of multiple linear regression and artificial neural networks. The study's findings have shown that the k-nearest neighbor's algorithm provides significantly higher accuracy than other methods. This kind of study needs to be discussed in the literature so that people can better deal with rubber waste in concrete. Doi: ۱۰.۲۸۹۹۱/CEJ-۲۰۲۲-۰۸-۰۴-۰۶ Full Text: PDF
کلیدواژه ها:
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :