Optimizing Airborne Wind Energy Systems for Sustainable Water Pumping: A Machine Learning Approach

سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 183

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CENAF02_059

تاریخ نمایه سازی: 20 فروردین 1403

چکیده مقاله:

This study presents a comprehensive analysis of integrating machine learning (ML) algorithms into an Airborne Wind Energy System (AWES) Pumping Kit (PK) to optimize its performance in harnessing wind energy for water pumping applications. The focus is on predicting wind speeds, a crucial factor for maximizing energy generation and pumping efficiency. Historical wind speed data is collected and preprocessed, followed by the training of a Random Forest Regressor model. The model is evaluated using Root Mean Squared Error (RMSE) on both training and testing datasets. Results show that the ML-based approach effectively predicts wind speeds, enabling the AWES PK to adjust its operation in real-time for optimal performance. This analysis demonstrates the feasibility and benefits of integrating ML techniques into renewable energy systems, paving the way for more efficient and sustainable solutions in water pumping and beyond.

نویسندگان

Seyed Reza Samaei

Post-doctoral, Lecturer of Technical and Engineering Faculty, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Elham Behdadfar

Bachelor's degree graduate, primary education field, The department of education region ۹, education of Tehran, Iran.