Improving the Accuracy of Recommendations and Trust in Collaborative Filtering Approach using LBG Clustering, Levy, and Chaotic Fruit Fly Algorithms
محل انتشار: هشتمین کنفرانس بین المللی پژوهش در علوم و مهندسی و پنجمین کنگره بین المللی عمران، معماری و شهرسازی آسیا
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 83
فایل این مقاله در 29 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICRSIE08_069
تاریخ نمایه سازی: 18 فروردین 1403
چکیده مقاله:
Nowadays, recommender systems play a major role in every aspect of our life. The most commonly used type of recommender systems are collaborative filtering based systems, which have become highly popular. In this paper, a novel approach is proposed for making recommendations in recommender systems. This approach combines collaborative filtering with LBG clustering in order to improve the accuracy of recommendations. In the proposed approach, Levy algorithm is integrated with chaotic fruit fly to tune the parameters and optimize the clusters. The purpose of this approach is to enhance the quality, accuracy, and security through considering the trust parameter using subjective logic model in explicit and implicit forms. The results of experiments conducted on the Movie lens dataset suggest a decrease in error and improvement in accuracy and security comparing to the existing methods.
کلیدواژه ها:
نویسندگان
Zahra Karbasi Marouf
MSc, Faculty of Information Technology and Computer Engineering, Imam Reza International University, Mashhad, Iran