Automatic fault diagnosis of computer networks based on a combination BP neural network and fuzzy logic

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 151

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAA-15-5_015

تاریخ نمایه سازی: 18 فروردین 1403

چکیده مقاله:

Today, computer network fault diagnosis is one of the key challenges experts are facing in the field of computer networks.  Therefore, achieving an automatic diagnosis system which is based on artificial intelligence methods and is able to diagnose faults with maximum accuracy and speed is of high importance. One of the methods which is studied and utilized up to now is artificial neural networks with a back propagation algorithm while using neural networks with a back propagation algorithm has two main challenges in front. The first challenge is related to the backpropagation learning type as it is a supervised learning requiring inductive knowledge driven from previous conditions. The second challenge is the long time required for training such a neural network. In this work, combining neural networks with a backpropagation algorithm and fuzzy logic is applied as a method for confronting these challenges. The result of this study shows that fuzzy clustering is able to provide the inductive knowledge required for backpropagation learning by determining the membership degree of training samples to different clusters of network faults. Also, according to the simulations taken place, implementing a fuzzy controller in determining the learning rate in each backpropagation iteration has resulted in successful outcomes. Thus, the learning speed of this algorithm has been increased in comparison to the constant learning rate mode resulted in reducing the training time duration of this neural networks.

کلیدواژه ها:

نویسندگان

Elham Bideh

Department of Computer Engineering, Shomal University, Amol, Iran

Mohammadreza Fadavi Amiri

Department of Computer Engineering, Shomal University, Amol, Iran

Javad Vahidi

Department of Computer Science, Iran University of Science and Technology, Tehran, Iran

Majid Iranmanesh

Department of Mathematics, Semnan University, Semnan, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • F. Ahmad, Z. Ahmad, C.A. Kerrache, F. Kurugollu, A. Adnane, ...
  • M. Al-Kasassbeh, G. Al-Naymat, and E. Al-Hawari, Towards generating realistic ...
  • A. Bagherinia, B. Minaei-Bidgoli, M. Hossinzadeh, and H. Parvin, Elite ...
  • Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, Greedy ...
  • J.C. Bezdek, R. Ehrlich, and W. Full, FCM: The fuzzy ...
  • J.C. Bezdek, R.J. Hathaway, M.J. Sabin, and W.T. Tucker, Convergence ...
  • M.C. Choy, D. Srinivasan, and R.L. Cheu, Neural networks for ...
  • M. Georgiopoulos, C. Li, and T. Kocak, Learning in the ...
  • N. Goyal, M. Dave, and A.K. Verma, Fuzzy based clustering ...
  • C-M. Hsu, Forecasting stock/futures prices by using neural networks with ...
  • Q. Hu, and D.B. Hertz, Fuzzy logic controlled neural network ...
  • J.P. Jesan, The Neural Approach to Pattern Recognition, ACM Digital ...
  • T. Kaur, Implementation of backpropagation algorithm: A neural network approach ...
  • A.S. Khan, Z. Ahmad, J. Abdullah, and F. Ahmad, A ...
  • S.Y. Kung, and J.N. Hwang, An algebraic projection analysis for ...
  • C.Y. Lee, M.S. Wen, G.L. Zhou, and T.A. Le, Application ...
  • M. Madhiarasan and S.N. Deepa, A Novel Criterion to Select ...
  • K. Qader and M. Adda, Network faults classification using FCM, ...
  • M. Qingwu, L. Chengbin, C. Hu, and L. Ti, Improved ...
  • H. Rashidy Kanan, and M. Yousefi Azar Khanian, Reduction of ...
  • P.D. Raval, and A.S. Pandya, Improved fault classification in series ...
  • D. Srinivasan, X. Jin, and R.L. Cheu, Adaptive neural network ...
  • S.N. Sivanandam, S. Sumathi, and S.N. Deepa, Introduction to Neural ...
  • C. Van Kien, H.P.H. Anh, and N.N. Son, Adaptive inverse ...
  • R. Wan, N. Xiong, Q. Hu, H.Wang, and J. Shang, ...
  • Q. Wang, Computer network fault diagnosis based on neural network, ...
  • J. Zhang, Modelling and optimal control of batch processes using ...
  • نمایش کامل مراجع