Development of a CGAN-Based Method for Aspect Level Text Generation: Encouragement and Punishment Factors in the Aspect Knowledge

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 97

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JCSE-10-1_004

تاریخ نمایه سازی: 18 فروردین 1403

چکیده مقاله:

Text mining systems may benefit from the use of automated text generation, especially when dealing with limited datasets and linguistic resources. Most successful text generation approaches are generic rather than aspect-specific, resulting in relatively inaccurate and similar sentences in different aspects. The present study proposes a solution to this problem by extracting aspect knowledge from relevant topics and creating the correct phrase based on the Conditional Generative Adversarial Network (CGAN) for each aspect. The proposed method produces sentences using an auxiliary dataset that cannot be distinguished from genuine sentences by the discriminator. In order to generate an auxiliary dataset, aspect-based information from datasets related to the target concept is extracted. To further improve the accuracy, the generator is encouraged or punished depending on the similarity with the training corpus. Two datasets in English and Persian are used to evaluate the performance of the proposed text generation method. The results show that adding similar aspects to the auxiliary dataset improves the quality of the generated sentences. In addition, encouragement leads to more accurate sentences, while punishment leads to more varied sentences.

کلیدواژه ها:

Deep Learning ، Text Generation ، Conditional Generative Adversarial Network ، Aspect ، Long Short-Term Memory

نویسندگان

Mohammadreza Shams

Department of Computer Engineering, Shahreza Campus, University of Isfahan, Isfahan, Iran.

Maryam Lotfi Shahreza

Department of Computer Engineering, Shahreza Campus, University of Isfahan, Isfahan, Iran.

Amir Masoud Soltani

Department of Artificial Intelligence, Faculty of Computer Engineering, University of Isfahan, Isfahan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :