Machine Learning Models for Mechanical and Micro Structural Properties of Recycled Fine Aggregate Concrete Using Different Mixing Approaches
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 37، شماره: 5
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 171
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-37-5_016
تاریخ نمایه سازی: 24 اسفند 1402
چکیده مقاله:
The construction industry is primarily responsible for the depletion of natural resources and the disruption of environmental equilibrium due to unregulated mining activities. In this particular context, the utilization of recycled fine aggregate (RFA) derived from construction and demolition (C&D) waste presents itself as a viable solution. The conventional method of mix proportioning for RFA in concrete is not applicable in this case. The main innovation of our research lies in the fulfilment of one of the principles of circular economy, namely the reduction of carbon emissions, through the recycling of locally collected concrete waste. To tackle this issue, a novel triple mix-proportioning approach has been developed using the concepts of maximum packing density and minimum paste theory. The fresh and hardened properties were evaluated and microstructural characterization was carried out for the newly formulated mixes incorporating RFA with optimized combined aggregates. The compressive strength of concrete with recycled fine aggregate increases by ۵.۰۴% for ۲۵% and, ۲۱.۶۹% for ۵۰% replacement, and decreases by ۳۵.۴۴% for ۱۰۰% replacement as compared to controlled concrete at the age of ۲۸ days using the triple mixing approach. The findings indicate that replacing approximately ۵۰% of sand with RFA is the optimal amount, as further replacement leads to a decrease in compressive strength, particularly at ۱۰۰% replacement due to the presence of adhered mortar in RFA. In this study, the performance evaluation of RFA concrete has been conducted by comparing six established ML regression models and sensitivity analysis was performed to assess the variable's performance.
کلیدواژه ها:
نویسندگان
A. Ranjith
Department of Civil Engineering, Nitte (Deemed to be University), NMAM Institute of Technology, Nitte, Karnataka, India
M. K. Yashwanth
Department of Civil Engineering, Maharaja Institute of Technology Mysore, Mandya, Karnataka, India
B. M. Kiran
Department of Civil Engineering, AdiChunchanagiri Institute of Technology, Chikmagalur, Karnataka, India
V. R. Ananda
Department of Civil Engineering, Vivekananda College of Engineering and Technology, Puttur, Karnataka, India
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :