Improving image segmentation using artificial neural networks and evolutionary algorithms
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 120
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJNAA-15-3_011
تاریخ نمایه سازی: 17 اسفند 1402
چکیده مقاله:
Image segmentation can be used in object recognition systems. Today, it is considered in most branches of science and industry, and in many of these branches the identification of the main components of the image is very important. For example, automatic detection and tracking of moving targets in military applications and segregation of different products in industrial applications, identification of road signs, segmentation of colonies, land use and land cover classification. It is also widely used in medicine, such as diagnosing brain and tumors and self-driving. In this study, image sections are performed by a feature extraction process using a neural network. In the process of applying the neural network method, optimization was performed using the ant colony algorithm. The results show that the identification of image segments using the neural network has an accuracy of ۸۷% alone, but increased to ۹۰% after optimization using ant colony optimization.
کلیدواژه ها:
نویسندگان
Mohammadreza Fadavi Amiri
Faculty of Computer Engineering, Shomal University, Amol ۴۶۱۶۱-۸۴۵۹۶, Mazandaran, Iran
Maral Hosseinzadeh
Faculty of Computer Engineering, Shomal University, Amol ۴۶۱۶۱-۸۴۵۹۶, Mazandaran, Iran
Seyyed Mohammad Reza Hashemi
Faculty of Computer Engineering Department, Shahrood University of Technology, Shahrood, Semnan, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :