Examining the Four Parameters of Genetic Algorithm in Order to Obtain the Best Solution for Transportation Network Design Problems
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 136
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JCEMA-7-4_002
تاریخ نمایه سازی: 7 اسفند 1402
چکیده مقاله:
Usually, after carrying out network design studies, the question arises of how the output variables are affected by the input variables of a model. In other words, how can one use a method to change the inputs of a statistical model in an organized manner so that the effects of these changes can be predicted on the output of the model. This work is usually done by sensitivity analysis, so in this sensitivity analysis study, two parameters, the optimality degree of the objective function of the problem and the time to solve the problem, are examined in relation to the change in the four parameters of the genetic algorithm. In other words, the purpose of this study is to find the best combination of genetic algorithm parameters (survival probability, mutation rate, recombination probability, population) and also to check the changes of the mentioned criteria against the four parameters of the problem, so that the best solution is obtained. The results showed that increasing the initial population will improve the answer. This is because a more accurate search is performed with a larger number of solving factors in the feasible space. The solution time of the model also shows the same ۶۵% as the optimality of the search objective function following the best reproduction probability value. The higher the survival probability, the more chromosomes of the current generation will be transferred to the next generation without any operation, which will naturally reduce the solution time.
کلیدواژه ها:
نویسندگان
Mehdi Nemati
Iran University of Science and Technology, Tehran, Iran.
Milad Tofighkhah
Department of Civil Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
Fatemeh Absari
Iran University of Science and Technology, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :