Sentiment Analysis of Cryptocurrency Data: BERT vs. GPT-۲ - A Comparative Study

سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 118

فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

AISOFT01_024

تاریخ نمایه سازی: 28 بهمن 1402

چکیده مقاله:

This paper compares the two language models, BERT and GPT-۲, in order to investigate sentiment in the context of cryptocurrency text data. A dataset of cryptocurrency-related text from various sources is labeled using a zero-shot classifier, and the BERT and GPT-۲ models are fine-tuned on this dataset. The study evaluates the performance of BERT and GPT-۲ in sentiment classification tasks, considering metrics such as recall, accuracy, and F۱-score. Results reveal that BERT performs more effectively than GPT-۲ in the area of understanding and classifying sentiment, specifically negative sentiment. The study emphasizes the significance of model goals and design for achieving superior performance in natural language processing tasks.

کلیدواژه ها:

نویسندگان

Nikoo Karimi

Engineering Science Department,College of EngineeringUniversity of TehranTehran, Iran

Ehsan Maani Miandoab

Engineering Science Department,College of EngineeringUniversity of TehranTehran, Iran

Ali Fahim

Engineering Science Department,College of EngineeringUniversity of TehranTehran, Iran