Sentiment Analysis of Cryptocurrency Data: BERT vs. GPT-۲ - A Comparative Study
محل انتشار: اولین کنفرانس ملی هوش مصنوعی و مهندسی نرم افزار
سال انتشار: 1402
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 118
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
AISOFT01_024
تاریخ نمایه سازی: 28 بهمن 1402
چکیده مقاله:
This paper compares the two language models, BERT and GPT-۲, in order to investigate sentiment in the context of cryptocurrency text data. A dataset of cryptocurrency-related text from various sources is labeled using a zero-shot classifier, and the BERT and GPT-۲ models are fine-tuned on this dataset. The study evaluates the performance of BERT and GPT-۲ in sentiment classification tasks, considering metrics such as recall, accuracy, and F۱-score. Results reveal that BERT performs more effectively than GPT-۲ in the area of understanding and classifying sentiment, specifically negative sentiment. The study emphasizes the significance of model goals and design for achieving superior performance in natural language processing tasks.
کلیدواژه ها:
نویسندگان
Nikoo Karimi
Engineering Science Department,College of EngineeringUniversity of TehranTehran, Iran
Ehsan Maani Miandoab
Engineering Science Department,College of EngineeringUniversity of TehranTehran, Iran
Ali Fahim
Engineering Science Department,College of EngineeringUniversity of TehranTehran, Iran