Contribution to the knowledge of the genus Lytorhynchus Peters, ۱۸۶۳ (Reptilia: Squamata: Colubridae) with special reference to the Iranian taxa
محل انتشار: نشریه تنوع جانوری، دوره: 5، شماره: 4
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 107
فایل این مقاله در 17 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JAD-5-4_003
تاریخ نمایه سازی: 10 بهمن 1402
چکیده مقاله:
The Lytorhynchus genus, spanning from the Sahara’s western fringes to the Middle East, eastern Pakistan, and northwestern India, has seen numerous species and subspecies classifications over the years. Many of these have been deemed synonymous due to overlapping morphological traits, a problem compounded by the absence of a comprehensive phylogenetic study. The taxa residing in Iran exhibit morphological variations attributable to their broad distribution and disjunct populations. Of the seven recognized species, three have been confirmed in Iran, although some populations display pholidosis distinct from initial descriptions. Species identification has also been fraught with ambiguities. This study aims to elucidate the diagnostic characteristics of taxa and furnish an updated identification key by revisiting past studies and examining new voucher specimens. The biogeography of Iranian taxa is also explored.
کلیدواژه ها:
نویسندگان
Naeim Moradi
Iranian Plateau Herpetology Research Group (IPHRG), Faculty of Sciences, Razi University, Kermanshah, Iran
Soheila Shafiei Bafti
Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Iran
Mohammad Ebrahim Sehhatisabet
Department of the Environment of Iran, Provincial Office of Kerman, Iran
Behzad Zadhoush
Department of Fisheries and Environment, Gorgan University of Agricultural Science and Natural Resources, Iran
Eskandar Rastegar-Pouyani
Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :