A Fuzzy Expert System for Early Diagnosis of Multiple Sclerosis

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 127

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JBPE-12-2_009

تاریخ نمایه سازی: 30 دی 1402

چکیده مقاله:

Background: Artificial intelligence plays an important role in medicine. Specially, expert systems can be designed for diagnosis of disease. Objective: Artificial intelligence can be used for diagnosis of disease. This study proposes an expert system for diagnosis of Multiple Sclerosis based on clinical symptoms and demographic characteristics. Specially, it recommends patients to refer to a specialist for further investigation.Material and Methods: In this empirical study, some symptoms of Multiple Sclerosis are mapped to fuzzy sets. Moreover, several rules are defined for prediction of Multiple Sclerosis. The fuzzy sets and rules form the knowledge base of the expert system. Patients enter their symptoms and demographic information via a user interface and Mamdani method is used in inference engine to produce the appropriate recommendation. Results: The precision, recall, and F-measure are used as criteria to analyze the efficiency of the expert system. The results show that the designed expert system can recommend patients for further investigation as effective as specialists. Specially, while the proposed expert system recommended referring to a doctor for some healthy users, most of the MS patients are diagnosed. Conclusion: The proposed expert system in this study can analyze the symptoms of patients to predict the Multiple Sclerosis disease. Therefore, it can investigate initial status of patients in a rapid and cost-effective manner. Moreover, this system can be applied in situations and places, which human experts are unavailable.

نویسندگان

- -

PhD, Department of Statistics, Mathematics, and Computer Science, Allameh Tabataba’i University, Iran

- -

PhD, Department of Biomedical Engineering, Standard Research Institute, Karaj, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Torres A, Nieto JJ. Fuzzy logic in medicine and bioinformatics. ...
  • Jackson P. Introduction to expert systems. United States: Publishing Co ...
  • Sharma K, Virmani J. A decision support system for classification ...
  • Morris D, Bharadwaj P. An Electronic Clinical Decision Support Tool ...
  • Hassan N, Arbaiy N, Shah NA. Fuzzy expert system for ...
  • Langarizadeh M, Khajehpour E, Khajehpour H, Farokhnia M, Eftekhari M. ...
  • Yilmaz A, Dagli M, Allahverdi N. A fuzzy expert system ...
  • Zarandi MF, Soltanzadeh S, Mohammadi A, Castillo O. Designing a ...
  • Allahverdi N, Akcan T. A Fuzzy Expert System design for ...
  • Esposito M, De Falco I, De Pietro G. An evolutionary-fuzzy ...
  • Mutawa AM, Alzuwawi MA. Multilayered rule-based expert system for diagnosing ...
  • Pal D, Mandana KM, Pal S, Sarkar D, Chakraborty C. ...
  • Wagner C, Hagras H. Toward general type-۲ fuzzy logic systems ...
  • Lublin FD, Reingold SC, Cohen JA, et al. Defining the ...
  • Brownlee WJ, Miller DH. Clinically isolated syndromes and the relationship ...
  • Cree BA, Khan O, Bourdette D, Goodin DS, Cohen JA, ...
  • Nazish S, Shahid R, Zafar A, Alshamrani F, Sulaiman AA, ...
  • نمایش کامل مراجع