Biomedical Image Denoising Based on Hybrid Optimization Algorithm and Sequential Filters

سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 99

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JBPE-10-1_010

تاریخ نمایه سازی: 30 دی 1402

چکیده مقاله:

Background: Nowadays, image de-noising plays a very important role in medical analysis applications and pre-processing step. Many filters were designed for image processing, assuming a specific noise distribution, so the images which are acquired by different medical imaging modalities must be out of the noise. Objectives: This study has focused on the sequence filters which are selected by a hybrid genetic algorithm and particle swarm optimization.Material and Methods: In this analytical study, we have applied the composite of different types of noise such as salt and pepper noise, speckle noise and Gaussian noise to images to make them noisy. The Median, Max and Min filters, Gaussian filter, Average filter, Unsharp filter, Wiener filter, Log filter and Sigma filter, are the nine filters that were used in this study for the denoising of medical images as digital imaging and communications in medicine (DICOM) format. Results: The model has been implemented on medical noisy images and the performances have been determined by the statistical analyses such as peak signal to noise ratio (PSNR), Root Mean Square error (RMSE) and Structural similarity (SSIM) index. The PSNR values were obtained between ۵۹ to ۶۳ and ۶۳ to ۶۵ for MRI and CT images. Also, the RMSE values were obtained between ۳۶ to ۴۷ and ۱۲ to ۲۰ for MRI and CT images. Conclusion: The proposed denoising algorithm showed the significantly increment of visual quality of the images and the statistical assessment.

نویسندگان

N Yousefi Moteghaed

PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

M Tabatabaeefar

MD, Department of Radiation Oncology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

A Mostaar

PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Yli-Harja O, Astola J, Neuvo Y. Analysis of the properties ...
  • Ko S-J, Lee YH. Center weighted median filters and their ...
  • Chen T, Wu HR. Adaptive impulse detection using center-weighted median ...
  • Chen T, Ma KK, Chen LH. Tri-state median filter for ...
  • Chen T, Wu HR. Space variant median filters for the ...
  • Dong Y, Xu S. A new directional weighted median filter ...
  • Sa PK, Dash R, Majhi B, editors. Second order difference ...
  • Mandal J, Sarkar A, editors. A Novel Modified Directional Weighted ...
  • Mandal J, Sarkar A, editors. A Modified Weighted Based Filter ...
  • Agarwal S, Singh O, Nagaria D. Analysis and Comparison of ...
  • Kota NS, Reddy GU. Fusion based Gaussian noise removal in ...
  • Umamaheswari J, Radhamani DG. Hybrid Denoising method for removal of ...
  • Jifara W, Jiang F, Rho S, Cheng M, Liu S. ...
  • Chawla P, Mittal R, Grewal K. Hybrid filtering technique for ...
  • Mredhula L, Dorairangaswamy MA. A combined pca model for denoising ...
  • Raj VP, Venkateswarlu T. Denoising of medical images using image ...
  • Priyadharsini B. A novel noise filtering technique for denoising MRI ...
  • Lalitha Y, Latte MV. A novel approach noise filtration for ...
  • Ali SA, Vathsal S. A GA based Window Selection Methodology ...
  • Syed AA. CT Image Denoising Technique using GA aided Window-based ...
  • Ali SA, Vathsal S, Kishore KL. An efficient denoising technique ...
  • Di Jia FH, Yang J, Zhang Y, Zhao D, Yu ...
  • Golshan HM, Hasanzadeh RP, Yousefzadeh SC. An MRI denoising method ...
  • Ilango G, Marudhachalam R. New hybrid filtering techniques for removal ...
  • Marudhachalam R, Ilango G. A New Hybrid Filtering Technique for ...
  • Bharathi D, Govindan SM. A New Hybrid Approach for Denoising ...
  • Marudhachalam R, Ilango G. Fuzzy hybrid filtering techniques for removal ...
  • Oulhaj H, Amine A, Rziza M, Aboutajdine D, editors. Noise ...
  • Devasena CL, Hemalatha M. Noise removal in magnetic resonance images ...
  • Sharif M, Jaffar MA, Mahmood MT. Optimal composite morphological supervised ...
  • Anisha K, Wilscy M. Impulse noise removal from medical images ...
  • Taher GM, El Taweal G, Wahed ME, Fouad A. Image ...
  • De Paiva JL, Toledo CF, Pedrini H. An approach based ...
  • Eberhart R, Kennedy J, editors. A new optimizer using particle ...
  • Kennedy J, Eberhart RC. A discrete binary version of the ...
  • نمایش کامل مراجع