Biomedical Image Denoising Based on Hybrid Optimization Algorithm and Sequential Filters
محل انتشار: مجله فیزیک و مهندسی پزشکی، دوره: 10، شماره: 1
سال انتشار: 1399
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 99
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JBPE-10-1_010
تاریخ نمایه سازی: 30 دی 1402
چکیده مقاله:
Background: Nowadays, image de-noising plays a very important role in medical analysis applications and pre-processing step. Many filters were designed for image processing, assuming a specific noise distribution, so the images which are acquired by different medical imaging modalities must be out of the noise. Objectives: This study has focused on the sequence filters which are selected by a hybrid genetic algorithm and particle swarm optimization.Material and Methods: In this analytical study, we have applied the composite of different types of noise such as salt and pepper noise, speckle noise and Gaussian noise to images to make them noisy. The Median, Max and Min filters, Gaussian filter, Average filter, Unsharp filter, Wiener filter, Log filter and Sigma filter, are the nine filters that were used in this study for the denoising of medical images as digital imaging and communications in medicine (DICOM) format. Results: The model has been implemented on medical noisy images and the performances have been determined by the statistical analyses such as peak signal to noise ratio (PSNR), Root Mean Square error (RMSE) and Structural similarity (SSIM) index. The PSNR values were obtained between ۵۹ to ۶۳ and ۶۳ to ۶۵ for MRI and CT images. Also, the RMSE values were obtained between ۳۶ to ۴۷ and ۱۲ to ۲۰ for MRI and CT images. Conclusion: The proposed denoising algorithm showed the significantly increment of visual quality of the images and the statistical assessment.
کلیدواژه ها:
نویسندگان
N Yousefi Moteghaed
PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
M Tabatabaeefar
MD, Department of Radiation Oncology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
A Mostaar
PhD, Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :