Optimization of Brain Tumor MR Image Classification Accuracy Using Optimal Threshold, PCA and Training ANFIS with Different Repetitions

سال انتشار: 1398
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 90

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JBPE-9-2_007

تاریخ نمایه سازی: 30 دی 1402

چکیده مقاله:

Background: One of the leading causes of death is brain tumors. Accurate tumor classification leads to appropriate decision making and providing the most efficient treatment to the patients. This study aims to optimize brain tumor MR images classification accuracy using optimal threshold, PCA and training Adaptive Neuro Fuzzy Inference System (ANFIS) with different repetitions. Material and Methods: The procedure used in this study consists of five steps: (۱) T۱, T۲ weighted images collection, (۲) tumor separation with different threshold levels, (۳) feature extraction, (۴) presence and absence of feature reduction applying principal component analysis (PCA) and (۵) ANFIS classification with ۰, ۲۰ and ۲۰۰ training repetitions. Results: ANFIS accuracy was ۴۰%, ۸۰% and ۹۷% for all features and ۹۷%, ۹۸.۵% and ۱۰۰% for the ۶ selected features by PCA in ۰, ۲۰ and ۲۰۰ training repetitions, respectively. Conclusion: The findings of the present study demonstrated that accuracy can be raised up to ۱۰۰% by using an optimized threshold method, PCA and increasing training repetitions.

نویسندگان

M J Tahmasebi Birgani

Department of Radiation Oncology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

N Chegeni

Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

F Farhadi Birgani

Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

D Fatehi

Department of Medical Physics, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran

Gh Akbarizadeh

Department of Electrical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

A Shams

Department of Radiation Oncology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Noureen E, Hassan K. Brain Tumor Detection Using Histogram Thresholding ...
  • Zhang WL, Wang XZ, editors. Feature extraction and classification for ...
  • Sahu G, Bhaiya P. A Survey Paper Based on the ...
  • Borole VY, Nimbhore SS, Kawthekar DSS. Image Processing Techniques for ...
  • Roy S, Sadhu S, Bandyopadhyay SK, Bhattacharyya D, Kim T-H. ...
  • Reddick WE, Glass JO, Cook EN, Elkin TD, Deaton RJ. ...
  • Joshi DM, Rana N, Misra V, editors. Classification of brain ...
  • Alfonse M, Salem A-BM. An automatic classification of brain tumors ...
  • Shubhangi D, Hiremath P, editors. Support vector machine (SVM) classifier ...
  • Clark MC, Hall LO, Goldgof DB, Velthuizen R, Murtagh FR, ...
  • Rajini NH, Bhavani R, editors. Classification of MRI brain images ...
  • Gering DT, Grimson WEL, Kikinis R, editors. Recognizing deviations from ...
  • Preetha R, Suresh G, editors. Performance analysis of fuzzy c ...
  • Singh A, editor Detection of brain tumor in MRI images, ...
  • Hosseini MS, Zekri M. Review of Medical Image Classification using ...
  • Subasi A. Application of adaptive neuro-fuzzy inference system for epileptic ...
  • Bhardwaj A, Siddhu KK. An approach to medical image classification ...
  • Zhang Y, Dong Z, Wu L, Wang S. A hybrid ...
  • Rathi V, Palani S. Brain tumor MRI image classification with ...
  • Zhang N, Ruan S, Lebonvallet S, Liao Q, Zhu Y, ...
  • Jolliffe I. Principal component analysis. New Yourk: Wiley Online Library. ...
  • Zhang Y, Wu L. An MR brain images classifier via ...
  • Lahmiri S, Boukadoum M, editors. Comparison of ANFIS and SVM ...
  • Sayah B, Tighiouart B. Brain tumour segmentation in MRI: knowledge-based ...
  • Simonetti AW, Melssen WJ, Szabo de Edelenyi F, van Asten ...
  • Zacharaki EI, Wang S, Chawla S, Soo Yoo D, Wolf ...
  • Jafari M, Shafaghi R. A hybrid approach for automatic tumor ...
  • Singh D, Kaur K. Classification of abnormalities in brain MRI ...
  • Al-Badarneh A, Najadat H, Alraziqi AM, editors. A classifier to ...
  • Sharma M, Mukharjee S. Brain tumor segmentation using hybrid genetic ...
  • Lakshmi A, Arivoli T. Computer aided diagnosis system for brain ...
  • El-Dahshan E, Salem A-BM, Younis TH. A hybrid technique for ...
  • Chaplot S, Patnaik L, Jagannathan N. Classification of magnetic resonance ...
  • Abdullah N, Chuen LW, Ngah UK, Ahmad KA, editors. Improvement ...
  • نمایش کامل مراجع