Heart Rate Variability Classification using Support Vector Machine and Genetic Algorithm

سال انتشار: 1397
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 85

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JBPE-8-4_010

تاریخ نمایه سازی: 30 دی 1402

چکیده مقاله:

Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system. Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transform (DWT) based features extracted from HRV which were further selected by genetic algorithm (GA), and were deployed by support vector machine to HRV classification. Materials and Methods: In this paper, ۵۳ ECGs including ۳ different beat types (ventricular fibrillation (VF), atrial fibrillation (AF) and also normal sinus rhythm (NSR)), were selected from the MIT/BIH arrhythmia database. The approach contains ۴ stages including HRV signal extraction from each ECG signal, feature extraction using DWT (entropy, mean, variance, kurtosis and spectral component β), best features selection by GA and classification of normal and abnormal ECGs using the selected features by support vector machine (SVM).Results: The performance of the classification procedure employing the combination of selected features were evaluated using several measures including accuracy, sensitivity, specificity and precision which resulted in ۹۷.۱۴%, ۹۷.۵۴%, ۹۶.۹% and ۹۷.۶۴%, respectively.Conclusion: A comparative analysis with the related existing methods illustrates the proposed method has a higher potential in the classification of AF and VF. The attempt to classify the ECG signal has been successfully achieved. The proposed method has shown a promising sensitivity of ۹۷.۵۴% which indicates that this technique is an excellent model for computer-aided diagnosis of cardiac arrhythmias.

کلیدواژه ها:

Heart Rate Variability (HRV) ، Wavelet Transform ، Genetic Algorithm (GA) ، Support Vector Machine (SVM)

نویسندگان

M Ashtiyani

Department of Biomedical Engineering and Medical Physics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

S Navaei Lavasani

Department of Biomedical Engineering and Medical Physics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

A Asgharzadeh Alvar

Department of Biomedical Engineering and Medical Physics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

M R Deevband

Department of Biomedical Engineering and Medical Physics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Tavassoli M, Ebadzadeh MM, Malek H. Classification of cardiac arrhythmia ...
  • Mansoory MS, Ashtiyani M, Tajik H, editors. Cardiac motion evaluation ...
  • Behbahani S, Asadi S, Ashtiyani M, Maghooli K, editors. Analysing ...
  • Dubin D. Rapid Interpretation of EKG’s: USA: Cover Publishing Company, ...
  • El Khansa L, Nait-Ali A. Parametrical modelling of a premature ...
  • Kheder G, Kachouri A, Taleb R, Ben Messaoud M, Samet ...
  • Ashtiyani M, Behbahani S, Asadi S, Birgani PM, editors. Transmitting ...
  • Vali M. Sub-Dividing Genetic Method for Optimization Problems. arXiv preprint ...
  • Cortes C, Vapnik V. Support-vector networks. Machine learning. ۱۹۹۵;۲۰:۲۷۳-۹۷. doi.org/۱۰.۱۰۰۷/BF۰۰۹۹۴۰۱۸ ...
  • Martis RJ, Acharya UR, Min LC. ECG beat classification using ...
  • Ashtiyani M, Asadi S, Birgani P, Khordechi E, editors. EEG ...
  • Ashtiyani M, Asadi S, Birgani PM, editors. ICA-based EEG classification ...
  • Balasundaram K, Masse S, Nair K, Umapathy K. A classification ...
  • Prasad H, Martis RJ, Acharya UR, Min LC, Suri JS. ...
  • Sumathi S, Beaulah HL, Vanithamani R. A wavelet transform based ...
  • Moody GB, Mark RG. The impact of the MIT-BIH arrhythmia ...
  • von Borell E, Langbein J, Despres G, Hansen S, Leterrier ...
  • Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE ...
  • Gritti I, Defendi S, Mauri C, Banfi G, Duca P, ...
  • Ashtiani M, Asadi S, Goudarzi PH, editors. A New Method ...
  • Birgani PM, Ashtiyani M, Asadi S, editors. MRI segmentation using ...
  • Ranganathan G, Bindhu V, Rangarajan DR. Signal processing of heart ...
  • Radivojac P, Obradovic Z, Dunker AK, Vucetic S, editors. Feature ...
  • Bajpai P, Kumar M. Genetic algorithm–an approach to solve global ...
  • Wornell GW, Oppenheim AV. Estimation of fractal signals from noisy ...
  • Khandoker AH, Begg RK, Palaniswami M, editors. Estimating Falls Risk ...
  • Li G, Chung WY. Detection of driver drowsiness using wavelet ...
  • Hu YH, Palreddy S, Tompkins WJ. A patient-adaptable ECG beat ...
  • Inan OT, Giovangrandi L, Kovacs GT. Robust neural-network-based classification of ...
  • Übeyli ED. Statistics over features of ECG signals. Expert Systems ...
  • Ince T, Kiranyaz S, Gabbouj M. A generic and robust ...
  • نمایش کامل مراجع