A New Hybrid Methodology Based on Data Envelopment Analysis and Neural Network for Optimization of Performance Evaluation

سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 81

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJIM-13-4_004

تاریخ نمایه سازی: 26 دی 1402

چکیده مقاله:

In this paper, a new method of combining ANN and DEA (ANN-DEA) presented in which the input and output values for a large number of DMUs determined as neural network inputs. We have also compared the new model with the existing approach of ANN-DEA. To illustrate the ability of the proposed methodology some case studies are used, including a set of ۵۰۰ Iranian bank branches.

نویسندگان

A. Namakin

Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

S. E. Najafi

Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

M. Fallah

Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

M. Javadi

Department of Industrial Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • A. Charnes, W. W. Cooper, E. Rhodes, Measuring the efficiency ...
  • R. D. Banker, A. Charnes, W. W. Cooper, Some models ...
  • J. Zhu, Quantitative models for performance evaluation and benchmarking: data ...
  • F. R. Roodposhti, F. H. Lotfi, M. V. Ghasemi, Acquiring ...
  • Y. J. Lee, S. J. Joo, H. G. Park, An ...
  • H. Jiang, Y. He, Applying data envelopment analysis in measuring ...
  • S. K. Lee, G. Mogi, K. S. Hui, A fuzzy ...
  • E. Karasakal, P. Aker, A multicriteria sorting approach based on ...
  • A. R. Bahari, A. Emrouznejad, Influential DMUs and outlier detection ...
  • R. Lacko, Z. Hajduov, V. Gbor, Data envelopment analysis of ...
  • T. Ertay, D. Ruan, U. R. Tuzkaya, Integrating data envelopment ...
  • E. Dzakn, H. Dzakn, Measuring the performance of manufacturing firms ...
  • F. H. Lotfi, M. V. Ghasemi, Malmquist productivity index on ...
  • M. Shafiee, F. H. Lotfi, H. Saleh, Supply chain performance ...
  • S. Soheilirad, K. Govindan, A. Mardani, E. K. Zavadskas, M. ...
  • I. Dobos, G. Vrsmarty, Inventory-related costs in green supplier selection ...
  • C. W. Huang, Assessing the performance of tourism supply chains ...
  • A. Azadeh, S. F. Ghaderi, H. Omrani, H. Eivazy, An ...
  • A. D. Athanassopoulos, S. P. Curram, A comparison of data ...
  • A. Costa, R. N. Markellos, Evaluating public transport efficiency with ...
  • . C. Pendharkar, J. A. Rodger, Technical efficiency-based selection of ...
  • D. Santin, F. J. Delgado, A. Valino, The measurement of ...
  • F. J. Delgado, Measuring efficiency with neural networks, an application ...
  • D. D. Wu, Z. Yang, L. Liang, Using DEAneural network ...
  • M. M. Mostafa, Modeling the efficiency of top Arab banks: ...
  • D. elebi, D. Bayraktar, An integrated neural network and data ...
  • A. Emrouznejad, E. Shale, A combined neural network and DEA ...
  • H. B. Kwon, J. Lee, Two-stage production modeling of large ...
  • H. Shabanpour, S. Yousefi, R. F. Saen, Forecasting efficiency of ...
  • A. Vaninsky, Combining data envelopment analysis with neural networks: Application ...
  • S. C. Hu, Y. K. Chung, Y. S. Chen, Using ...
  • A. Azadeh, S. F. Ghaderi, M. Anvari, M. Saberi, H. ...
  • A. Azadeh, L. Javanmardi, M. Saberi, The impact of decision-making ...
  • H. Liao, B. Wang, T. Weyman-Jones, Neural network based models ...
  • D. Santin, On the approximation of production functions: a comparison ...
  • S. Samoilenko, K. M. Osei-Bryson, Determining sources of relative inefficiency ...
  • H. H. Liu, T. Y. Chen, Y. H. Chiu, F. ...
  • H. B. Kwon, Performance modeling of mobile phone providers: A ...
  • H. B. Kwon, J. Lee, J. J. Roh, Best performance ...
  • H. B. Kwon, J. H. Marvel, J. J. Roh, J. ...
  • M. Toloo, A. Zandi, A. Emrouznejad, Evaluation efficiency of large-scale ...
  • N. Misiunas, A. Oztekin, Y. Chen, K. Chandra, DEANN: A ...
  • E. Shokrollahpour, F. H. Lotfi, M. Zandieh, An integrated data ...
  • S. Agarwal, DEA-neural networks approach to assess the performance of ...
  • M. Sharifi, J. Rezaeian, Efficiency evaluation of Mazandaran industrial parks ...
  • N. Singh, M. Pant, Evaluating the Efficiency of Higher Secondary ...
  • R. D. Raut, S. S. Kamble, M. G. Kharat, H. ...
  • A. Cavallin, M. Frutos, H. P. Vigier, D. G. Rossit, ...
  • C. C. Lee, C. Ou-Yang, A neural networks approach for ...
  • M. A. Razi, K. Athappilly, A comparative predictive analysis of ...
  • D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning ...
  • M. I. Lourakis, A brief description of the Levenberg-Marquardt algorithm ...
  • H. R. Ansari, M. J. Zarei, S. Sabbaghi, P. Keshavarz, ...
  • R. Hecht-Nielsen, Kolmogorov’s mapping neural network existence theorem, in Proceedings ...
  • K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are ...
  • G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics ...
  • K. I. Funahashi, On the approximate realization of continuous mappings ...
  • R. Hecht-Nielsen, Theory of the backpropagation neural network, in Neural ...
  • نمایش کامل مراجع