Using Convolutional Neural Network to Enhance Classification Accuracy of Cancerous Lung Masses from CT Scan Images
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 11، شماره: 4
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 147
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-11-4_005
تاریخ نمایه سازی: 20 دی 1402
چکیده مقاله:
Lung cancer is a highly serious illness, and detecting cancer cells early significantly enhances patients' chances of recovery. Doctors regularly examine a large number of CT scan images, which can lead to fatigue and errors. Therefore, there is a need to create a tool that can automatically detect and classify lung nodules in their early stages. Computer-aided diagnosis systems, often employing image processing and machine learning techniques, assist radiologists in identifying and categorizing these nodules. Previous studies have often used complex models or pre-trained networks that demand significant computational power and a long time to execute. Our goal is to achieve accurate diagnosis without the need for extensive computational resources. We introduce a simple convolutional neural network with only two convolution layers, capable of accurately classifying nodules without requiring advanced computing capabilities. We conducted training and validation on two datasets, LIDC-IDRI and LUNA۱۶, achieving impressive accuracies of ۹۹.۷% and ۹۷.۵۲%, respectively. These results demonstrate the superior accuracy of our proposed model compared to state-of-the-art research papers.
کلیدواژه ها:
نویسندگان
Mohammad Mahdi Nakhaie
Ershad Damavand Institute of Higher Education, Tehran, Iran.
Sasan Karamizadeh
Ershad Damavand Institute of Higher Education, Tehran, Iran.
Mohammad Ebrahim Shiri
Amirkabir University of Technology, Tehran, Iran.
Kambiz Badie
E-Content & E-Services Research Group, IT Research Faculty, ICT Research Institute, Karegar, Tehran, ۱۴۱۵۵-۳۹۶۱, Tehran, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :