Ensemble-RNN: A Robust Framework for DDoS Detection in Cloud Environment
محل انتشار: مجله مهندسی برق مجلسی، دوره: 17، شماره: 4
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 116
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_MJEE-17-4_003
تاریخ نمایه سازی: 16 دی 1402
چکیده مقاله:
The advent of cloud computing has made it simpler for users to gain access to data regardless of their physical location. It works for as long as they have access to the internet through an approach where the users pay based on how they use these resources in a model referred to as “pay-as-per-usage”. Despite all these advantages, cloud computing has its shortcomings. The biggest concern today is the security risks associated with the cloud. One of the biggest problems that might arise with cloud services availability is Distributed Denial of Service attacks (DDoS). DDoS attacks work by multiple machines attacking the user by sending packets with large data overhead. Therefore, the network is overwhelmed with unwanted traffic. This paper proposes an intrusion detection framework using Ensemble feature selection with RNN (ERNN) to tackle the problem at hand. It combines an Ensemble of multiple Machine Learning (ML) algorithms with a Recurrent Neural Network (RNN). The framework aims to address the issue by selecting the most relevant features using the ensemble of six ML algorithms. These selected features are then used to classify the network traffic as either normal or attack, employing RNN. The effectiveness of the proposed model is evaluated using the CICDDoS۲۰۱۹ dataset, which contains new types of attacks. To assess the performance of the model, metrics like precision, accuracy, F-۱ score, and recall are taken into consideration.
کلیدواژه ها:
نویسندگان
Asha Songa
VIT-AP UNIVERSITY Inavolu, Beside AP Secretariat, Amaravati AP, India
Ganesh Karri
VIT-AP University, Inavolu, Beside AP Secretariat, Amaravati AP, India
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :