Photovoltaic Power Output Prediction using Graphical User Interface and Artificial Neural Network

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 100

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MJEE-17-4_007

تاریخ نمایه سازی: 16 دی 1402

چکیده مقاله:

This paper focuses on the development of a Graphical User Interface (GUI) and Artificial Neural Network (ANN) for the prediction of photovoltaic (PV) power output. PV power is generated based on the time, location, and surrounding climate conditions. Therefore, solar power generation predictions using computational methods are needed since the changing weather, which will impact the output power will not generate according to its rating. The objectives of this research are to predict photovoltaic power output at Universiti Tun Hussein Onn Malaysia (UTHM), develop an ANN configuration that can perform the prediction of solar power generation, and design GUI system that can both perform the calculations of power generation and ANN. In order to test the efficiency and reliability, MATLAB software has been used to develop the GUI and ANN, and the output is compared with the proposed mathematical equations. The real data as input data was obtained from the PV solar panel located at GSEnergy Focus Group fertigation site. The GUI with user-friendly features and ANN have been successfully designed and developed which can perform daily prediction of solar power output. On top of that, the results have shown that the ANN predictions are more precise to the real data than the GUI.

کلیدواژه ها:

نویسندگان

Cempaka Amalin Mahadzir

Department of Electrical Engineering, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia.

Ahmad Fateh Mohamad Nor

Department of Electrical Engineering, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia.

Siti Amely Jumaat

Department of Electrical Engineering, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Johor, Malaysia.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Azman, A. A. Rahman, N. A. Bakar, F. Hanaffi, and ...
  • Nandhini, K. Bharathi, S. Giri, S. Sowvav, and A. Suyampulingam, ...
  • Zaharim et al., "Public acceptance on stand-alone renewable energy project ...
  • Iqbal, M. D., & Rizvi, I. A. (۲۰۱۹). “Design of ...
  • Setyawati, H., Murwani, I. K., Darmokoesoemo, H., & Permana, A. ...
  • gov.my. (۲۰۲۰). FiT – Renewable Energy Malaysia. [online][۸] Kumar, “Social, ...
  • Mishra, Vijay Laxmi, Yogesh K. Chauhan, and Kripa S. Verma. ...
  • Premalatha, N., & Valan Arasu, A. (۲۰۱۶). “Prediction of solar ...
  • BEKTAŞ, Sibel ÇEVİK, Recep Cakmak, and İsmail H. ALTAŞ. "Design ...
  • Liu, Shicheng, Ruidong Chang, Jian Zuo, Ronald J. Webber, Feng ...
  • PEAK DUO SERIES MODEL ۳۹۵ - ۴۱۵ Wp | ۱۳۲ ...
  • Sustainable Energy Development Authority (SEDA MALAYSIA), Chapter ۳: Photovoltaic Technology, ...
  • Franklin, E. A. (۲۰۱۹). “Calculations for a Grid-Connected Solar Energy ...
  • Mayer, M. J., & Gróf, G. (۲۰۲۱). “Extensive comparison of ...
  • Liu, L., Zhao, Y., Chang, D., Xie, J., Ma, Z., ...
  • نمایش کامل مراجع