تعیین تراوایی با استفاده از مفهوم واحدهای جریان هیدرولیکی و شبکه عصبی مصنوعی

سال انتشار: 1391
نوع سند: مقاله کنفرانسی
زبان: فارسی
مشاهده: 824

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

GSI31_233

تاریخ نمایه سازی: 19 اسفند 1391

چکیده مقاله:

تراوایی یکی از مهمترین پارامتر های مخازن نفتی است که در بسیاری از محاسبات و مدل سازی های مخزن نقش موثری ایفا می کند . یکی از روش های تخمین تراوایی، استفاده از مفهوم واحد های جریان هیدرولیکی Hydraulic Flow Units, HFU است . میدان مورد مطالعه میدان نفتی اهواز مخزن آسماری است که یکی از بزرگترین میادین تولیدی خشکی ایران می باشد.در این میدان اثبات شد که شاخص کیفیت سنگ RQI شاخص منطقه/زون جریانی FZI نوع سنگ گسسته DRT و اشباع 35 %جیوه 35 R Winland روشی موثر جهت دسته بندی نوع سنگ می باشند.مدت زمان زیادی است که تشخیص داده شده است که بهترین حالت برقراری ارتباط میان تخلخل-تراوایی با استفاده از داده های مغزه بر اساس دسته بندی سنگی داده های مغزه آنها بدست می آید .علاوه بر این ، مراحل انجام این روش در مدل سازی مخزن موردنظر در پاراگراف زیر توضیح داده شده است: در این مطالعه ابتدا داده های مغزه معمول برای تعیین دسته بندی سنگی در فواصل مغزه گیِری شده مورد استفاده قرار گرفتند . مقادیر چاههای نمودارگیری شده در عمق های مغزه گیری شده تعیین و نرمالیزه شده و با دسته بندی سنگی محاسبه شده با استفاده از داده های مغزه مورد تجزیه و تحلیل قرارگرفتند . پس از آن به دلیل اینکه با استفاده از مدل های خطی که جهت پیش بینی دسته بندی سنگی در فواصل و چاههای مغزه گیری شده ارتباطی مناسب بادرصد خطای کم بین شاخص منطقه جریانی و داده های نمودارگیری برقرار نگردید ناگزیر در مرحله بعد با استفاده از شبکه های عصبی مصنوعی مدلی ارایه گردید که تراوایی و شاخص منطقه جریانی برای تمام چاههای نمودارگیری شده را فراهم می کند که در واقع شبکه عصبی مدلی با ضریب همبستگی بسیار خوبی 0.99 = R2 بین تراوایی مغزه و تراوایی پیش بینی شده و همچنین 0/98 = R2 بین شاخص منطقه جریانی محاسبه شده توسط اطلاعات مغزه و شاخص منطقه جریانی پیش بینی شده در ارتباط با داده های لاگ ارایه داد.

کلیدواژه ها:

تراوایی ، واحد های جریان هیدرولیکی ، دسته بندی سنگی ، شبکه عصبی مصنوعی

نویسندگان

آمنه کوت زاده

کارشناسی ارشد مهندسی نفت،دانشجو،دانشگاه آزاد اسلامی واحد امیدیه

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • تسلیمی، م.، بهلولی، بب .، کاظم زاده، ع .، کمالی، ...
  • شکرانه، ف.، روستایی، س.، 2 ارزیابی خصوصیات پتروفیزیکی مخزن و ...
  • صدیقی، ح.، ولی، ج.، " بررسی تاثیر واحدهای جریان هیدرولیکی ...
  • ماریای .نوروشین؛ مترجم؛ فتی پور جلیلیان، ا.، نجبا، م.، "شبکه ...
  • Hasan Nooruddin, ."Field Application of a Modified Kozen y-Carmen Correlation ...
  • Mitra Chekani and Riyaz Kharrat , ."Reservoir Rock Typing in ...
  • نمایش کامل مراجع