A Novel Method for Automated Estimation of Effective Parameters of Complex Auditory Brainstem Response: Adaptive Processing Based on the Correntropy Concept
محل انتشار: مجله توانبخشی ایرانیان، دوره: 20، شماره: 1
سال انتشار: 1400
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 112
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IRJU-20-1_003
تاریخ نمایه سازی: 2 دی 1402
چکیده مقاله:
Objectives: Automated Auditory Brainstem Responses (ABR) peak detection is a novel technique to facilitate the measurement of neural synchrony along the auditory pathway through the brainstem. Analyzing the location of the peaks in these signals and the time interval between them may be utilized either for analyzing the hearing process or detecting peripheral and central lesions in the human hearing system.
Methods: In this paper, model-based signal processing is proposed to estimate the effective parameters of ABR signals. In this process, the biological parameters of the signal are assessed by utilizing a Finite Impulse Response (FIR) adaptive filter in which its adaptation procedure is performed based on the correntropy concept. The proposed method is applied on a set of ABR signals recorded in response to three stimuli of /da/, /ba/, and /ga/, and then its performances are compared with an existing state-of-the-art technique.
Results: The results show that the proposed method can significantly increase the accuracy of estimating the parameters in stable stimulations (/da/, /ba/) for major positive and negative peaks. This improvement is more significant (up to ۲-۳ times) for /ba/ stimulus and especially in major positive peaks. However, in other peaks, the improvements also occurred in smaller amounts. However, for unstable stimuli (/ga/), no significant improvement was achieved.
Discussion: Increasing the accuracy performance of the proposed method for detecting the stable stimuli (while its performance remains unchanged) for detecting unstable stimuli indicates its effectiveness in automated clinical analysis of ABR signals.
کلیدواژه ها:
نویسندگان
Seyed Vahab Shojaedini
Department of Biomedical Engineering, Iranian Research Organization for Science and Technology, Tehran, Iran.
Amir Salar Jafarpisheh
Department of Ergonomics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
Nematollah Rouhbakhsh
Department of Audiology, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
Mohsen Vahedi
Department of Biostatistics, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
Negar Amirian
Department of Electrical, Biomedical and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :