Comparison of Cementation Factor Determination by Artificial Neural Network Method and Optimized Experimental Relations in Carbonate Rocks

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 199

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JPSTR-12-2_002

تاریخ نمایه سازی: 30 آذر 1402

چکیده مقاله:

The cementation factor is one of the basic parameters for calculating water saturation and then hydrocarbon saturation of reservoirs. The best way to determine the cementation factor is through laboratory measurements. To generalize this coefficient for samples without laboratory measurements, experimental relationships versus petrophysical properties by researchers can be somewhat helpful. The method of artificial neural networks, with the help of training, validation, and data analysis, has given better results in determining the cementation factor of carbonate samples. It is one of the best methods to use petrophysical data as training data and make acceptable predictions with analytical methods. Therefore, laboratory measurement of the cementation factor has been performed for ۱۵۹ carbonate cores from the Sarvak formation in southwest Iran. For the studied samples, the cementation factor in porosity was determined as a quadratic equation with the highest correlation coefficient. In this study, the compatibility of the experimental relationship shows better conformity by considering the permeability of each sample. Improvement of empirical relationships by the authors, correlation coefficients between the laboratory data, and the experimental relationships have been increased. Therefore, it is better to use improved experimental relationships for the studied carbonate samples. Artificial neural network methods have been used to process the data, best adapt the laboratory data, and present a suitable model. The Bayesian Regularization algorithm with five hidden layers has the least error in the test, validation, and testing stages.

نویسندگان

Jafar Vali

Department of Mining Engineering, Urmia University, Urmia, Iran

Farnusch Hajizadeh

Department of Mining Engineering, Urmia University, Urmia, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Mahmoodpour S, Kamari E, Esfahani M R, Karimi MehrA (۲۰۲۰) ...
  • Archie G E (۱۹۴۲) The electrical resistivity logs an aid ...
  • Jodry R L, (۱۹۹۲) Pore geometry of carbonate rocks and ...
  • Liu X p, Hu X-X (۲۰۱۲) Effects of pore structure ...
  • Keller G V, Frischknecht F C (۱۹۶۶) Electrical methods in ...
  • Pulido H, Samaniego F, Galicia-Muñoz G, Rivera J, Vélez C ...
  • Winsauer W O, Shearin Jr, H M, Masson P Y, ...
  • Focke J W, Munn D (۱۹۸۷) Cementation exponents (m) in ...
  • Schlumberger log interpretation charts (۲۰۰۹) ۱۰۲۰ edition, Shel Company, ۱-۲۹۲ ...
  • Nugent W H, Brie A, Johnson D L, Nurmi R ...
  • Borai A.M., (۱۹۸۴) A new correlation for cementation factor in ...
  • Asquith G B (۱۹۸۵) Handbook of log evaluation techniques for ...
  • Sethi D K (۱۹۷۹) Some considerations about the formation resistivity ...
  • Motiei H (۱۹۹۳) Stratigraphy of Zagros, Geological Survey of Iran ...
  • Masoudi P, Tokhmechi B, Bashari A, Jafari M A (۲۰۱۲) ...
  • Lucia F J (۱۹۸۳) Petrophysical parameters estimated from visual descriptions ...
  • Dunham R J, Ham W E (۱۹۶۲) Classification of Carbonate ...
  • Alaniz A Y, Sanchez E N, Loukianov A G (۲۰۰۷) ...
  • Khomfoi S, Tolbert L M (۲۰۰۷) Fault diagnostic system for ...
  • Okut H, Gianola D, Rosa G J M (۲۰۱۱) Weigel ...
  • Vigdor B, Lerner B (۲۰۰۶) Accurate and fast off and ...
  • Gianola D, Okut H, Weigel K A, Rosa G J ...
  • Moller F M (۱۹۹۳) A scaled conjugate gradient algorithm for ...
  • Hagan M T, Menhaj M B (۱۹۹۴) Training feedforward networks ...
  • Saini L M (۲۰۰۸) Peak load forecasting using Bayesian regularization, ...
  • Mohaghegh S, Arefi R, Ameri S, Hefner M H (۱۹۹۴) ...
  • Shokir E M, El-MAlsughayer A A, Al-Ateeq A (۲۰۰۶) Permeability ...
  • Wong P, Amnizadeh F, Nikravesh M (۲۰۰۲) Soft computing for ...
  • Rezaee R M, Kadkhaodaie-Ilkhchi A, Alizadeh M P (۲۰۰۷) Intelligent ...
  • Saggaf M.M, Nebrija E L (۲۰۰۳) A fuzzy logic approach ...
  • Saemi M, Ahmadi M (۲۰۰۸) Integration of genetic and a ...
  • García-Pedrajas N, Hervás-Martínez C, Muñoz-Pérez J (۲۰۰۳) Covnet: a cooperative ...
  • Gujarati D N (۲۰۰۴) Multiple regression analysis: The problem of ...
  • Perez - Rosale C (۱۹۸۲) On the relationship between formation ...
  • https://www.corelab.com/cli/routine-rock/soxhlet-extraction-apparatus,cli/university-training/porosimeter-porg-۲۰۰ and cli/routine-rock/ultra-perm gas-permeameter ...
  • https://ripi.ir/services-and-products/research-and-consulting-services/۲۸۷-۲۰۱۴-۰۵-۱۸-۱۱-۱۶-۴۴, Determination of cementation coefficient (m) and constant value of ...
  • McPhee C, Reed J, Zubizarreta I (۲۰۱۵) Core Analysis, A ...
  • نمایش کامل مراجع