Comparison of Cementation Factor Determination by Artificial Neural Network Method and Optimized Experimental Relations in Carbonate Rocks
محل انتشار: مجله علوم و فن آوری نفت، دوره: 12، شماره: 2
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 199
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JPSTR-12-2_002
تاریخ نمایه سازی: 30 آذر 1402
چکیده مقاله:
The cementation factor is one of the basic parameters for calculating water saturation and then hydrocarbon saturation of reservoirs. The best way to determine the cementation factor is through laboratory measurements. To generalize this coefficient for samples without laboratory measurements, experimental relationships versus petrophysical properties by researchers can be somewhat helpful. The method of artificial neural networks, with the help of training, validation, and data analysis, has given better results in determining the cementation factor of carbonate samples. It is one of the best methods to use petrophysical data as training data and make acceptable predictions with analytical methods. Therefore, laboratory measurement of the cementation factor has been performed for ۱۵۹ carbonate cores from the Sarvak formation in southwest Iran. For the studied samples, the cementation factor in porosity was determined as a quadratic equation with the highest correlation coefficient. In this study, the compatibility of the experimental relationship shows better conformity by considering the permeability of each sample. Improvement of empirical relationships by the authors, correlation coefficients between the laboratory data, and the experimental relationships have been increased. Therefore, it is better to use improved experimental relationships for the studied carbonate samples. Artificial neural network methods have been used to process the data, best adapt the laboratory data, and present a suitable model. The Bayesian Regularization algorithm with five hidden layers has the least error in the test, validation, and testing stages.
کلیدواژه ها:
نویسندگان
Jafar Vali
Department of Mining Engineering, Urmia University, Urmia, Iran
Farnusch Hajizadeh
Department of Mining Engineering, Urmia University, Urmia, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :