Developing a model to predict neonatal respiratory distress syndrome and affecting factors using data mining: A cross-sectional study

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 174

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJRM-21-11_004

تاریخ نمایه سازی: 30 آذر 1402

چکیده مقاله:

Background: One of the major challenges that hospitals and clinicians face is the early identification of newborns at risk for adverse events. One of them is neonatal respiratory distress syndrome (RDS). RDS is the widest spared respiratory disorder in immature newborns and the main source of death among them. Machine learning has been broadly accepted and used in various scopes to analyze medical information and is very useful in the early detection of RDS. Objective: This study aimed to develop a model to predict neonatal RDS and affecting factors using data mining. Materials and Methods: The original dataset in this cross-sectional study was extracted from the medical records of newborns diagnosed with RDS from July ۲۰۱۷-July ۲۰۱۸ in Alzahra hospital, Tabriz, Iran. This data includes information about ۱۴۶۹ neonates, and their mothers information. The data were preprocessed and applied to expand the classification model using machine learning techniques such as support vector machine, Naïve Bayes, classification tree, random forest, CN۲ rule induction, and neural network, for prediction of RDS episodes. The study compares models according to their accuracy. Results: Among the obtained results, an accuracy of ۰.۸۱۵, sensitivity of ۰.۸۰۲, specificity of ۰.۸۱۲, and area under the curve of ۰.۸۴۳ was the best output using random forest. Conclusion: The findings of our study proved that new approaches, such as data mining, may support medical decisions, improving diagnosis in neonatal RDS. The feasibility of using a random forest in neonatal RDS prediction would offer the possibility to decrease postpartum complications of neonatal care.

کلیدواژه ها:

Data mining ، Classification ، Neonatal respiratory distress syndrome ، Newborn ، Machine learning. ، داده کاوی ، طبقه بندی ، سندرم دیسترس تنفسی نوزادان ، نوزاد ، یادگیری ماشین.

نویسندگان

Parisa Farshid

Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran.

Kayvan Mirnia

Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.

peyman Rezaei

Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran.

Elham Maserat

Department of Medical Informatics, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

Taha Samad-Soltani

Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Gallacher DJ, Hart K, Kotecha S. Common respiratory conditions of ...
  • Rimensberger PC. Pediatric and neonatal mechanical ventilation. Switzerland: Springer; ۲۰۱۴ ...
  • Kumar MN, Koushik KVS, Deepak K. Prediction of heart diseases ...
  • Dai W, Brisimi TS, Adams WG, Mela T, Saligrama V, ...
  • Oliveria T, Barbosa E, Matins S, Goulart A, Neves J, ...
  • llayaraja M, Meyyappan T. Mining medical data to identify frequent ...
  • Ferreira D, Oliveria A, Freitas A. Applying data mining techniques ...
  • Daunhawer I, Kasser S, Koch G, Sieber L, Cakal H, ...
  • Precup D, Robles-Rubio CA, Brown KA, Kanbar L, Kaczmarek J, ...
  • Mueller M, Almeida JS, Stanislaus R, Wagner CL. Can machine ...
  • Natarajan A, Lam G, Liu J, Beam AL, Beam KS, ...
  • Sheikhtaheri A, Zarkesh MR, Moradi R, Kermani F. Prediction of ...
  • Hajipour M, Taherpour N, Fateh H, Yousefi E, Etemad K, ...
  • Najafian B, Saburi A, Fakhraei SH, Afjeh A, Eghbal F, ...
  • Senthilkumar D, Paulraj S. Prediction of low birth weight infants ...
  • Hange U, Selvaraj R, Galani M, Letsholo K. A data-mining ...
  • Ghaderi-Ghahfarokhi S, Sadeghifar J, Mozafari M. A model to predict ...
  • Borson NS, Kabir MR, Zamal Z, Rahman RM. Correlation analysis ...
  • Shirwaikar RD, Acharya UD, Makkithaya K, Surulivelrajan M, Lewis LES. ...
  • Morais A, Peixoto H, Coimbra C, Abelha A, Machado J. ...
  • Williamson JR, Bliss DW, Browne DW, Indic P, Bloch-Salisbury E, ...
  • Shoshtarian Malak J, Zeraati H, Nayeri FS, Safdari R, Danesh ...
  • Betts KS, Kisely S, Alati R. Predicting neonatal respiratory distress ...
  • Shearer C. The CRISP-DM model: The new blueprint for data ...
  • Cios KJ, Moore GW. Uniqueness of medical data mining. Artif ...
  • Minale T, Mola M, Jemaneh G, Doyore F. Application of ...
  • Tanner L, Schreiber M, Low JG, Ong A, Tolfvenstam T, ...
  • Huang J, Ling ChX. Using AUC and accuracy in evaluating ...
  • Breiman L. Random forests. Machine Learning ۲۰۰۱; ۴۵: ۵-۳۲ ...
  • Bebortta S, Panda M, Panda SS. Classification of pathological disorders ...
  • Safdari R, Kadivar M, Tabari P, Shawky Own H. [Comparision ...
  • Ferreira D, Oliveira A, Freitas A. Applying data mining techniques ...
  • Mikhno A, Ennett CM. Prediction of extubation failure for neonates ...
  • نمایش کامل مراجع