New Encoding Model Based on gRNA-DNA Pairs to Predict off-target Effects of Genome Editing with CRISPR/Cas۹
سال انتشار: 1401
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 161
نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
IBIS11_132
تاریخ نمایه سازی: 19 آذر 1402
چکیده مقاله:
CRISPR/Cas۹ is a new genome-editing technology used in biomedical applications. To make genome editing with CRISPR far more precise and practical, we must concentrate on predicting CRISPR off-target effects and try to decrease them. Although numerous computational models have been developed to predict off-target activities, the existing methods suffer from low precision for gene editing at the clinical level. In addition, the inputs of most of these algorithms are gRNA sequences in on-hot vector encoding form. However, recent research illustrated that both gRNA and DNA strongly impact on the prediction precision of off-target activity. To address these problems, we propose a novel encoding scheme of gRNA-DNA sequences, and deploy it in two deep neural network-based architectures, including Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), to predict off-target e↵ects. The comparison of off-target prediction results based on our proposed gRNA-DNA encoding scheme with state-of-the-art on two popular geneediting datasets, CRISPOR and GUIDE-seq, reveals the superiority of our approach based on the area under the Receiver Operating Characteristic (AUROC) curve criteria which is the promising value of up to ۹۸%.
کلیدواژه ها:
نویسندگان
Roghayyeh Alipanahi
Zanjan university
Leila Safari
Zanjan university
Alireza Khanteymoori
Universit¨atsklinikum freiburg