Intelligent Data Classification Using Optimized Fuzzy Neural Network and Improved Cuckoo Search Optimization

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 124

فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد

این مقاله در بخشهای موضوعی زیر دسته بندی شده است:

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJFS-20-6_009

تاریخ نمایه سازی: 18 آذر 1402

چکیده مقاله:

In data mining, classification is one of the most important steps in predicting the target class. Classification is performed by an improved model in existing work in which feature selection is performed based on the bat optimization method to increase the classification accuracy. And an Enhanced Neural Network is used for classification which includes Intuitive, Interpretable Correlated-Contours fuzzy rules. And an effective model is created based on the extraction of fuzzy rules, where data partitioning is performed via a similarity-based directional component. However, the dataset used for experimentation is noisy as well as incomplete data values. Due to incompleteness, knowledge discovery is obstructed and the result of classification is affected as well. And bat provides very slow convergence and easily falls into local optima. To solve this issue, an improved framework is introduced in which missing value imputation is performed by using k means clustering, and then for feature selection, an improved cuckoo search optimization is used. An enhanced classifier based on fuzzy logic and Alex Net neural network structure (F-ANNS) is used for classification and hybrid Ant Colony Particle Swarm Optimization (HASO) is used for optimizing parameters of the AlexNet neural network classifier. The results show that the proposed work is more effective in precision, recall, accuracy, and f-measure as shown by experimental results.

کلیدواژه ها:

Hybrid ant colony particle swarm optimization ، AlexNet neural network ، cuckoo search ، missing data Imputation ، Artificial neural network

نویسندگان

Pramoda Patro

Department of Engineering Mathematics, Koneru Lakshmaiah Education Foundation, Hyderabad, Telangana, India, ۵۰۰۰۷۵

Krishna Kumar

۲Department of Applied Science and Humanities, MIT School of engineering, MIT Art Design and Technology University, Loni Kalbhor, Pune,India

G. Suresh Kumar

Department of Engineering Mathematics, KoneruLakshmaiah Education Foundation Vaddeswaram, Guntur, Andhra Pradesh, India

Aditya Kumar Sahu

Department of Computer science and Engineering, Amrita School of Computing, Amaravati Campus, Amrita Vishwa Vidyapeetham, Amaravati, Andhra Pradesh, ۵۲۲۵۰۳, India

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Abdolrazzaghi, M. H. Zari , W. Pedrycz, M. Daneshmand, ...
  • A. S. Alturki, Trac sign detection and recognition using adaptive ...
  • D. Chitara, K. R. Niazi, A. Swarnkar, N. Gupta, Cuckoo ...
  • C. T. Chu, C. C. Ho, H. W. Li, Proximity ...
  • Y. Deng, Z. Ren, Y. Kong, F. Bao, Q. Dai, ...
  • S. Ding, W. Song, D. G. Wang, H. X. Li, ...
  • L. Du, Y. Du, M. C. F. Chang, A Recon ...
  • M. M. Ebadzadeh, A. Salimi-Badr, IC-FNN: A novel fuzzy neural ...
  • J. E. Espinosa, S. A. Velastin, J. W. Branch, Vehicle ...
  • H. G. Han, Z. Y. Chen, H. X. Liu, J. ...
  • H. G. Han, J. M. Li, X. L. Wu, J. ...
  • M. Han, K. Zhong, T. Qiu, B. Han, Interval type-۲ ...
  • P. Jana, S. Ghosh, S. K. Bera, R. Sarkar, Handwritten ...
  • S. D. Kermany, M. Joorabian, S. Deilami, M. A. Masoum, ...
  • I. Khan, Z. Luo, J. Z. Huang, W. Shahzad, Variable ...
  • G. Khodabandelou, M. M. Ebadzadeh, Fuzzy neural network with support ...
  • K. P. Korshunova, A convolutional fuzzy neural network for image ...
  • S. Z. Mirjalili, H. Zhang, S. Chalup, N. Noman, S. ...
  • T. K. B. Mudiyanselage, X. Xiao, Y. Zhang, Y. Pan, ...
  • W. Nawaz, S. Ahmed, A. Tahir, H. A. Khan, Classi ...
  • P. Patro, K. Kumar, G. S. Kumar, Cellular neural network, ...
  • P. Patro, K. Kumar, G. S. Kumar, Applications of three ...
  • P. Patro, K. Kumar, G. S. Kumar, Various classi ers ...
  • P. Patro, K. Kumar, G. S. Kumar, Neuro fuzzy system ...
  • P. Patro, K. Kumar, G. S. Kumar, Optimized hybridization of ...
  • N. M. Ranjan, R. S. Prasad, LFNN: Lion fuzzy neural ...
  • UCI Machine learning repository, https://archive.ics.uci.edu/ml/index.php ...
  • J. Xu, J. Han, K. Xiong, F. Nie, Robust and ...
  • R. Zhang, X. Li, H. Zhang, F. Nie, Deep fuzzy ...
  • J. Zhao, S. Liu, M. Zhou, X. Guo, L. Qi, ...
  • G. Zhou, L. Lv, X. Qiao, L. Jin, Hierarchical attention-based ...
  • S. Zobeidi, M. Naderan, S. E. Alavi, E ective text ...
  • نمایش کامل مراجع