Smart City Surveillance: Edge Technology Face Recognition Robot Deep Learning Based
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 37، شماره: 1
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 168
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
این مقاله در بخشهای موضوعی زیر دسته بندی شده است:
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-37-1_003
تاریخ نمایه سازی: 15 آذر 1402
چکیده مقاله:
In the contemporary context, the imperative to strengthen security and safety measures has become increasingly evident. Given the rapid pace of technological advancement, the development of intelligent and efficient surveillance solutions has garnered significant interest, particularly within the realm of smart city (SC). Surveillance systems have been transformed with the emergence of edge technology (ET), the Internet of Things (IoT), and deep learning (DL) to become key components of SC, notably the domain of face recognition (FR). This work introduces a smart surveillance car robot based on the ESP۳۲-CAM micro-controller, coupled with a FR model that combines DL models and traditional algorithms. The Haar-Cascade (HC) algorithm is employed for face detection, while feature extraction relies on a proposed convolutional neural network (CNN) and predifined DL models, VGG and ResNet. While the classification is made by two distinct algorithms: Naive Bayes (NB) and K-nearest neighbors (KNN). Validation experiments demonstrate the superiority of a composite model comprising HC, VGG, and KNN, achieving accuracy rates of ۹۲.۰۰%, ۹۴.۰۰%, and ۹۶.۰۰% on the LFW, AR, and ORL databases, respectively. Additionally, the surveillance car robot exhibits real-time responsiveness, including email alert notifications, and boasts an exceptional recognition accuracy rate of ۹۹.۰۰% on a custom database. This ET surveillance solution offers advantages of energy efficiency, portability, remote accessibility, and economic affordability.
کلیدواژه ها:
نویسندگان
A. Medjdoubi
Faculty of Exact Science, Department of Computer Science, University of Mustapha Stambouli, Mascara, Algeria
M. Meddeber
Faculty of Exact Science, Department of Computer Science, University of Mustapha Stambouli, Mascara, Algeria
K. Yahyaoui
Faculty of Exact Science, Department of Computer Science, University of Mustapha Stambouli, Mascara, Algeria
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :